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Abstract

This paper examines the relationship between automation technology diffu-

sion and the wage. In this model, producers either choose automation or

non-automation technology, whichever is more profitable. Further, when the

producers introduce automation technology, they must pay fixed costs, which

differ between industries. The main results of this paper indicate that the

improving the productivity of automation technology promotes automation

diffusion, decreases labor share, and also decreases the wage when the level

of automation technology diffusion is sufficiently high.
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1 Introduction

In recent years, many studies show that labor income share has been declining over

the last several decades. Technological advancement is considered one of the main

factors influencing this phenomenon (Karabarbounis and Neiman, 2014; Grossman

et al., 2017; Alvarez-Cuadrado et al., 2018).1 Acemoglu and Restrepo (2018b) and

Autor et al. (2018) show that the diffusion of labor-saving automation technology, such

as robots and machines, is one of the most important recent technological advances

underlying this decline in labor income share. Labor income share decreases as labor

is replaced by capital in the production process through the diffusion of automation.

Bergholt et al. (2021) find that automation has become an increasingly important

factor of the labor share decline since the early 2000s.

To analyze the benefit that individual workers gain from automation diffusion, this

paper studies not only the effect on labor income share but also the effect on the wage.

While many empirical studies examine the effect of automation technology on the

wage, no consensus exists on whether the automation diffusion increases or decreases

the wage. Graetz and Michaels (2018) analyze data on robot adoption and conclude

that, on average, an industry’s adoption of industrial robots positively affects worker

wages. On the other hand, Acemoglu and Restrepo (2020a) focus on local labor

markets data divided by commuting zones between 1990 and 2007 and demonstrate

that the introduction of industrial robots negatively affects the wage. Further, Dauth

et al. (2019) applies the approach used by Acemoglu and Restrepo (2020a) to data of

Germany and Chiacchio et al. (2018) applies it to data of 6 countries in EU (Finland,

France, Germany, Italy, Spain and Sweden). The research of the former shows that

1 Several types of drivers of the decline in labor income share have been identified in the liter-

ature. Elsby et al. (2013) and Boehm et al. (2020) show that globalization, which promotes

offshoring and reduces the ratio of labor-intensive industry in OECD countries, substantially

contributes to a decline in labor income share. Autor et al. (2017, 2020), and Barkai (2020)

emphasize the rising market concentration of sales and markups; as market sales are concen-

trated on a smaller fraction of productive firms, their markup rates increase, and the income

share of profits compresses the income share of workers.
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the average wage does not increase as a result of robot adoption, while the that of

the latter shows the decrease in the average wage but the result is not robust.

A theoretical study on the relationship between automation diffusion and the wage

is conducted by Acemoglu and Restrepo (2018b). Using the task-based model pre-

sented by Zeira (1998),2 they analyze the impact of advancement in automation tech-

nology (i.e. when automation technology becomes available for more tasks) on the

wage. The adoption of automation technology by enterprises displaces workers but

simultaneously increases aggregate production and the labor demand. As a result of

this combination of positive and negative effects on the labor demand, Acemoglu and

Restrepo’s static analysis shows that the wage might decline. However, the extended

model taking capital accumulation into account concludes that the advancement in

automation technology increases the wage because capital accumulation has an addi-

tionally positive effect.

This paper presents a general equilibrium model in which the wage could decrease

even in the presence of capital accumulation. The model shows that an improvement

in automation technology decreases the wage if the present level of automation dif-

fusion is sufficiently high, while it increases the wage otherwise. This result suggests

that the varying results of the aforementioned empirical researches may be consis-

tently explained by focusing specifically on the level of automation diffusion.

The model is constructed using the task-based model presented by Zeira (1998)

and the over-lapping generations model by Diamond (1965). Households live for two

periods; they inelastically supply labor as workers in the first period and manage

production units in industries as managers in the second period. They choose either

automation technology or non-automation technology for the management of the pro-

duction units to maximize profits. To introduce automation technology, they must

pay fixed costs, which are different across industries. The fixed cost is considered as

one of the main factors of technologically choice in previous theoretical studies (e.g.,

2 Acemoglu and Autor (2011); Nakamura (2009); Nakamura and Nakamura (2008, 2019); Naka-

mura and Zeira (2018); Yuki (2016); Hémous and Olsen (2021); Aghion et al. (2019); Martinez

et al. (2018) etc utilize the task-based model.
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Jovanovic and Lach, 1989; Hall, 2004). Sirkin et al. (2015) specify the fixed costs,

estimate their magnitude, and state that their burden impedes the adoption of robots.

In the model, managers choose the more profitable technology in each industry;

automation technology is chosen in the industries that feature lower fixed costs. As

automation technology improves, more industries with higher fixed costs can adopt

automation technology.

The main result of this paper is that an improvement in automation productivity

causes a decrease (an increase) in the wage when the level of automation diffusion is

sufficiently high (low). Whether the wage decreases or not is associated with the level

of difficulty that an industry encounters in introducing automation, that is, how high

the fixed costs are in the industry. The advancement of diffusion displaces workers

while it increases aggregate production. The former has a negative effect and the lat-

ter a positive effect on the wage. As automation technology diffuses, the fixed costs

in industries in which automation technology is newly introduced become higher. To

pay higher fixed costs in these industries, the returns from using automation technol-

ogy must be larger. Because the returns are proportional to aggregate production,

how much aggregate production increases is associated with how much fixed costs

increase in newly automated industries. This model shows that unless the fixed costs

in such industries increase rapidly, the positive effect of the increase in aggregate

production on the wage is smaller than the negative effect of displacement when the

level of automation diffusion is sufficiently high. In that case, in contrast to Acemoglu

and Restrepo (2018b), the wage decreases when the level of automation diffusion is

sufficiently high, even in the presence of capital accumulation.

In this model, the labor income share decreases with automation diffusion. While

the income share of managers increases with the diffusion, the income share of workers

decreases. Because the impact of the latter is greater than that of the former, the

sum of their labor income shares decreases. This result is consistent with the trend

over the last several decades.

This paper also considers two extensions. In the first extension, we introduce a

technology frontier. Because of the technology frontier, managers who face high fixed
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costs cannot utilize automation technology; otherwise, they would use it. Acemoglu

and Restrepo (2018b) adopt this assumption, and the extension of this model high-

lights the difference between their model and ours. In the model of Acemoglu and

Restrepo (2018b), expanding the technology frontier increases the wage when capi-

tal accumulation exists. By contrast, our analysis shows that even in the presence

of capital accumulation, the expansion of the technology frontier decreases the wage

when the level of the frontier is sufficiently high. The second extension considers a

policy that subsidizes the fixed costs. Because the technology choice depends on the

return net of the fixed cost, such a policy ultimately affects the diffusion of automa-

tion technology. The benefits of subsidy policy vary across households. Subsidy rates

are shown to exist that which improve the welfare of all households. The analysis

shows that there exists subsidy rates that improve the welfare of all households.

The rest of the paper is organized as follows. Section 2 constructs the model.

Section 3 solves the equilibrium and describes the conditions of the existence of a

unique steady state. Section 4 examines the comparative statics and presents an

extension of the model considering the creation of new intermediate goods. Section

5 discusses the differences between this paper and Acemoglu and Restrepo (2018b),

and modifies the model by introducing an automation technology frontier to clearly

demonstrate the differences. Section 6 introduces a subsidy policy into the model.

Section 7 concludes this paper

.

2 The Model

The consumer side of the model is based upon the two-period OLG model pre-

sented by Diamond (1965). Each household supplies labor as a worker and chooses a

technology during the first period of her life and then manages a production unit pro-

ducing intermediate goods in an industry during the second period. There are many

industries over which households are distributed during the first period. The pro-

ducer side consists of managers and final goods producers. The final goods producers
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use intermediate goods supplied by the managers for production, and the final goods

are utilized for consumption and savings. The factor of production for operating a

unit in an industry producing intermediate goods is either labor or capital; managers

choose the more profitable input. When capital is chosen, managers can make use

of automation technology,3 which enables them to produce without using labor, but

instead they must pay fixed costs that are heterogeneous between industries.

2.1 Households

There is a unit measure of households in each industry j ∈ [0, 1]. Households live

for two periods. During the first (young) period, they inelastically supply labor as

workers and allocate their wages to consumption and savings. During the second

period (old), they manage production units in industries of intermediate goods to

receive profits and they consume the returns from their savings and profits. Let

us consider a household born in period t and working in industry j. Her utility

maximization problem is expressed as follows:

Ut(j) = max
cyt ,c

o
t+1

log(cyt (j)) + β log(cot+1(j)), β ∈ (0, 1) (1)

s.t. cyt (j) + st(j) = wt, (2)

cot+1 = Rt+1st(j) + πt+1(j),

where Ut(j), c
y
t (j), c

o
t+1(j), st(j), and πt+1(j) represent lifetime utility, consumption

during the first period, consumption during the second period, savings, and the profits

that she receives during the second period, respectively; Rt+1 is the gross interest rate,

and β is the discount factor. She is assigned to industry j ∈ [0, 1] before she decides

consumption and savings during the first period. Thus, the decision accounts for the

profits she generates during the second period.

From her optimal conditions, savings st(j) are expressed by the following equation:

st(j) =
β

1 + β
wt −

πt+1(j)

(1 + β)Rt+1
. (3)

3 This structure of the production side is similar to that of Zeira (1998), who is the pioneer in

the literature that examines mechanization by using the task-based model.
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2.2 Producers

There are two types of producers: final goods producers and managers producing

intermediate goods. Final goods producers combine a unit measure of intermediate

goods. Their technology is

log Yt =

∫ 1

0

log yt(j)dj, (4)

where Y is the amount of final goods and y(j) is the amount of the intermediate

good j ∈ [0, 1]. 4 From the profit maximization problem of final goods producers, the

demand for each intermediate good y(j) is

yt(j) =
Yt
pt(j)

, (5)

where pt(j) is the price of intermediate good j.

A manager operating a production unit in industry j produces intermediate good

j. In each industry, a unit measure of managers exists.5 To produce intermediate

goods, managers must choose between non-automation technology and automation

technology. When managers choose non-automation technology, they employ only

labor as their factor of production. On the other hand, when they choose automation

technology, they use only capital as their factor of production. To introduce automa-

tion technology, they must pay fixed costs before commencing operations. The choice

of technology is made at the end of the first period.

Acemoglu and Restrepo (2018b) assume that labor productivity varies between

tasks. Capital has a comparative advantage when used in tasks with low labor pro-

ductivity and thus automation technology is adopted in such tasks. In our model, the

4 In the model of Acemoglu and Restrepo (2018b), the range of intermediate goods is from N−1

and N , where N ≥ 1 and N increases over time. They interpret a change in N as the creation

of new tasks. We set N = 1 here, but Section 4.3 develops a model in which the range is from

N − 1 to N and analyzes the effect of an increase in N on the wage.
5 This assumption ensures that the intermediate goods market is competitive, in spite of house-

holds’ immovability between industries.
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fixed costs of introducing automation technology are the source of different compar-

ative advantages across industries. Sirkin et al. (2015) specify the components of the

cost to introduce a spot welding, an example of automation technology, and estimate

their magnitudes. They state that the price of the robotic hardware and software to

introduce a spot welding robot is only one-quarter of the total cost.6 Some of other

components of the cost are fixed costs, such as the cost of programming and integrat-

ing a robot into a factory and the cost of safety structures that protect workers and

robots themselves. These fixed costs account for two-thirds of the total. The argu-

ment that fixed costs inhibit the adoption of new technologies has been the subject

of many theoretical papers (e.g., Jovanovic and Lach, 1989; Hall, 2004).

Because managers gain profits from producing intermediate goods, they choose the

more profitable technology as follows:

πt+1(j) = max{πlt+1(j), π
k
t+1(j)}, (6)

where πlt+1(j) and π
k
t+1(j) are the profits from producing intermediate goods by using

non-automation technology and automation technology in industry j, respectively.

When a manager utilizes non-automation technology, she can produce intermediate

goods without incurring any fixed costs. The production function is given by as

following:7

ylt(j) = lt(j), (7)

where lt(j) is the amount of labor inputs. The profit maximization problem then

becomes

πlt(j) = max
lt(j)

plt(j)y
l
t(j)− wtlt(j), (8)

6 Spot welding is a type of electric resistance welding used to weld various sheet metal products,

and it achieves a labor-saving in a welding line (Takayama and Takahashi, 2014). It is applied

to production processes, such as the production of automobile and aerospace vehicles (Li and

Duarte, 2018).
7 For simplicity, the production function for non-automation technology is linear. The case in

which the function is non-linear is discussed in section 4.2.
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where wt represents the wage. Since the production function is linear, the price of

the intermediate goods produced by using non-automation technology is as follows:

plt(j) = wt. (9)

Thus, the profit from non-automation technology is equal to zero.

The production function for automation technology is8

ykt (j) = γkt(j)
α, α ∈ (0, 1), γ > 0, (10)

where kt(j) is the capital used in industry j and γ is the productivity of automa-

tion technology. The profit maximization problem for managers choosing automation

technology is

πkt (j) = max
kt(j)

pkt (j)y
k
t (j)−Rtkt(j)− C(j), (11)

where C(j) ≡ C · j, C > 0. (12)

In the above equation, C(j) represents the fixed cost function required to introduce

automation technology into industry j and is paid for by final goods.9 Since fixed costs

are increasing in j, the comparative advantage of labor to capital is also increasing in

j.10 The first order condition is the following equation:

Rt = pkt (j)γαkt(j)
α−1. (13)

By substituting this equation into (11), profit becomes as follows:

πkt (j) =
1− α

α
(pkt (j)γα)

1
1−αR

α
α−1

t − C(j). (14)

3 Equilibrium

At equilibrium, the optimal conditions for consumers and producers and market

clearing conditions for each market are satisfied. By using (5), (10) and (13), from

8 Rosenfeld et al. (2004) study the productivity of foraging robots. They show that the marginal

productivity is decreasing in the number of robots.
9 Chen and Koebel (2017) estimates fixed costs by industry and show that they are different.

10 In the model of Acemoglu and Restrepo (2018b), the productivity of labor depends on the

industry index. Our setting differs, but it is the same in terms of the comparative advantage.
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the intermediate goods market clearing condition, the price of intermediate good j

produced by using automation technology pkt (j) is given by the following:

pkt (j) =
Y 1−α
t

γ
(
Rt
α
)α. (15)

Substituting this equation into (14), πkt (j) can be rewritten as

πkt (j) = (1− α)Yt − C(j). (16)

The fixed costs are increasing in the industry index. This paper focuses on the

case in which a threshold j∗ ∈ (0, 1) exists and managers in industry j ≤ j∗ choose

automation technology.

Since the profit from non-automation technology is equal to zero, the return from

automation technology for industry j∗t is zero. Thus, by using (16) and (12),

j∗t =
(1− α)Yt

C
. (17)

From (13) and (15),

kt(j) =
αYt
Rt

. (18)

The capital market clearing condition is

Kt =

∫ j∗t

0

kt(j)dj, (19)

where Kt represents aggregate capital. Thus, the interest rate is equal to

Rt =
j∗t αYt
Kt

. (20)

From (5), (7), and (9),

lt(j) =
Yt
wt
. (21)

Since the labor supply is unity, the labor market clearing condition is

1 =

∫ 1

j∗
lt(j)dj. (22)

Thus, the equation for the wage equals the following:

wt = (1− j∗t )Yt. (23)
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Combining (18) and (21) with (4), (7) and (10) yield the amount of final goods Yt

as follows:

Yt =

[
γ

(
Kt

j∗t

)α]j∗t ( 1

1− j∗t

)1−j∗t
. (24)

By using (17), this equation can be rewritten as

Cj∗t
1− α

=

[
γ

(
Kt

j∗t

)α]j∗t ( 1

1− j∗t

)1−j∗t
. (25)

Thus, Kt equals

Kt =

(
Cj∗t
1− α

) 1
αj∗t

(1− j∗t )
1−j∗t
αj∗t j∗t γ

− 1
α ≡ Φ(j∗t ). (26)

From the final goods market clearing condition, savings are used to produce capital

for the next period. Thus, the equation for capital accumulation is

Kt+1 =

∫ 1

0

st(j)dj. (27)

By combining (3), (16), (17), (20), and (23), this equation can be rewritten as follows:

Kt+1 =
2αβC

(1− α){2α(1 + β) + (1− α)}
(1− j∗t )(j

∗
t ) ≡ Ψ(j∗t ). (28)

Since Kt+1 = Φ(j∗t+1) from (26), the equation for capital accumulation is then

converted to the dynamic equation for j∗ as follows:

Φ(j∗t+1) = Ψ(j∗t ). (29)

From this equation, the conditions of the existence and the stability of a unique steady

state with j∗ ∈ (0, 1) are obtained as the following propositions.11

Proposition 1. When the parameter of the fixed cost function C is sufficiently low,

a unique steady state exists in j∗ ∈ (0, 1).

11 j∗ = 1 and j∗ = 0 do not hold in a steady state. When j∗t = 1, since workers receive no income,

no capital is left and no manager can choose automation technology in the next period (i.e.,

j∗t+1 = 0). When j∗t = 0, workers make savings Kt+1 > 0. When fixed cost function is (12),

πk(0) > πl(0) = 0, and thus j∗t+1 > 0.
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Proposition 2. Suppose that a unique steady state in j∗ ∈ (0, 1) exists.12 When au-

tomation productivity γ is low enough or C is high enough that the level of automation

diffusion j∗ is less than 1/2, this steady state is globally stable. If j∗ > 1/2 and C is

sufficiently low or high, a threshold of j∗ ∈ (1/2, 1) exists below which the steady state

is locally stable.

In Appendix A, we provide more formal conditions and proofs for Proposition 1

and 2 and illustrate the dynamics graphically. The analysis in this paper focuses only

on the cases in which there exists a unique steady state that is globally and locally

stable.

4 Analysis

4.1 Comparative Statics

In this section, we focus on the unique steady state and analyze the long-run effects

on the wage and income shares of an improvement in automation technology produc-

tivity, γ, and of the cost-saving technological changes which reduces the parameter of

the fixed cost function, C. The former effect is summarized in the following proposi-

tion. Proofs of the propositions presented in this section are provided in Appendix.B.

Proposition 3. Suppose that Proposition 2 holds and thus a unique and locally stable

steady state exists. If the productivity of automation technology γ is high (low) enough

or if the fixed cost parameter C is low (high) enough that the level of automation

diffusion j∗ is greater (less) than 1/2, an improvement in automation productivity γ

decreases (increases) the wage in the long-run.

This proposition shows that the wage decreases (increases) due to the improvement

in the automation productivity when the threshold of a unique steady state j∗ is

12 Strictly speaking, this proposition requires the additional assumption that C is small enough

that Φ(j∗) is an increasing function in the steady state as shown in Proposition A.2.
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greater (less) than 1/2. From (17) and (23), the wage in the steady state is

w = (1− j∗)Y, (30)

=
C

1− α
j∗(1− j∗). (31)

Lemma B.1 presented in Appendix.B shows that j∗ increases as γ rises or C falls.

(31) demonstrates that the level of j∗ determines the sign of the marginal effect of γ

on the wage. This proposition shows that when γ is high (low) enough or C is low

(high) enough that j∗ > 1/2 (j∗ < 1/2), an increase in γ decreases (increases) the

wage.

From (30), the wage is the product of the mass of industries employing labor 1−j∗

multiplied by the amount of final goods Y . When j∗ increases, labor is substituted

for capital in newly automated industries. Thus, this channel decreases labor demand

and the wage. On the other hand, an increase in j∗ causes an increase in Y from

(17), thus pulls up the wage from (30). For automation technology to be introduced

in industries with higher fixed costs, Y needs to be large. When j∗ > 1/2 (j∗ < 1/2),

the negative (positive) effect is dominant, thus the wage decreases (increases) with

an increase in γ. This result might appear to depend on the assumption that the

fixed cost function is linear. We discuss how robust the result is when the fixed cost

function is more general.

The following proposition shows the effect of a cost-saving technological change on

the wage.

Proposition 4. Suppose that Proposition 1 holds and thus a unique steady state

exists. If γ is high enough or C is low enough that j∗ > 1/2, the wage decreases

with a decrease in C. If j∗ < 1/2, there exists a threshold of C, Cw2, and the wage

decreases with a decrease in C for any j∗ when C < Cw2. When C ≥ Cw2, the wage

increases with a decrease in C if the level of j∗ is intermediate in (0, 1/2), while the

wage decreases if j∗ is sufficierntly high or sufficiently low.

This proposition shows the effects of a cost-saving technological change that reduces

the fixed cost of automation technology on the wage. When γ is high enough or C is
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low enough that j∗ > 1/2, a decrease in C reduces the wage. When j∗ < 1/2, it also

reduces the wage if C < Cw2. Whereas the indirect effect of a decrease in C through

an increase in j∗ raises the wage when j∗ < 1/2, the direct effect reduces the wage

(see (31)). When the level of C is sufficiently low, the negative direct effect is larger

than the positive indirect effect, and thus the wage decreases with a decrease in C.

By contrast, when j∗ < 1/2 and C ≥ Cw2, there exists the region in which the wage

increase by the technological change. The wage increases when j∗ is intermediate

in (0, 1/2), whereas the wage decreases when j∗ is large enough or small enough in

(0, 1/2).

From Proposition 3 and 4, when the technology level is high, that is γ is high enough

or C is low enough that j∗ > 1/2, the wage decreases with both an improvement of

automation productivity and a cost-saving technological progress. On the other hand,

when the technology level is low enough that j∗ < 1/2, the wage increases with γ

from Proposition 3. By contrast, as for the cost-saving technological progress, except

for the case in which C > Cw2 and j∗ is intermediate in (0, 1/2), the wage decreases

with a decrease in C from Proposition 4. These propositions suggest that when the

technology level reaches a high enough state of advancement and thus, the diffusion

level is sufficiently high, both types of technological progress lower the wage.

While many empirical researches examine the effect of automation diffusion on the

wage, these studies obtain different results. Some researches show that the diffusion of

automation increases the wage (e.g., Autor and Salomons, 2017; Graetz and Michaels,

2018). Others, such as Acemoglu and Restrepo (2020a), Dauth et al. (2019) and

Chiacchio et al. (2018), show that the effect of automation on the wage is negative

or ambiguous. Proposition 3 and 4 show that whether the technological progress

promoting automation diffusion increases or decreases the wage is determined by the

level of automation diffusion in the economy. Existing researches do not empirically

examine the influence of the diffusion level upon the effect of an introduction of new

automation technology on the wage. The results in this paper suggest a new empirical

question regarding the relationship between automation diffusion and the wage.

The following proposition analyzes the effect of an increase in γ or a decrease in C

14



on the labor income share. In this model, workers and managers exist. The definition

of the labor income share in SNA includes the income share of managers, so in the

next proposition, the labor income share is the sum of the income shares of both

workers and managers.13

Proposition 5. When Proposition 2 holds and thus a unique and locally stable steady

state exists, the income share of managers increases (decreases), and that of workers

decreases (increases) with γ (C). The total income share of managers and workers

decreases (increases) with γ (C).

The income share of managers increases (decreases), and that of workers decreases

(increases) with γ (C). Their total income share decreases (increases) with γ (C). This

result is consistent with many researches, such as Elsby et al. (2013) and Karabar-

bounis and Neiman (2014) that show a decline in the labor income share in many

countries since the 1980s.14

As Piketty and Saez (2003) and Jones and Kim (2018) suggest, the gap between

of income share of workers and entrepreneurs has been widening in the US since the

1970s.

(Figure 1 around here)

Figure 1 illustrates graphically the effect of a productivity improvement of automa-

tion technology on the extent of automation technology diffusion, the amount of final

goods production, wage, the income share of workers, the income share of managers,

and the total labor income share at the steady state. The parameters are set to be

α = 0.3, β = 0.82, and C = 4.4. The time preference β is a standard value for OLG

model. The parameter value of the production function of automation technology α

does not change qualitative results. The value of C and the range of γ are chosen to

ensure the unique stable steady state. As shown in Proposition 3, when j∗ is over 1/2

13 Let C be aggregate fixed cost, and Π be aggregate profit. The income share of managers and

workers are Π/(Y − C) and w/(Y − C), respectively.
14 The definition of labor income share in Karabarbounis and Neiman (2014) does not include

the element equivalent to profits in our model.
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(γ is approximately 5), aggregate capital and the wage decrease with γ. As shown in

Proposition 5, the income share of workers decreases, the income share of managers

increases, and the total income share decreases with γ.

4.2 Why Can Wage Decrease?

In the model of Acemoglu and Restrepo (2018b) and many other task-based models

analyzing mechanization, the wage increases because of technological change when

the technology choice depends upon producers’ decision.1516 By contrast, our model

shows that the wage decreases with an increase in the automation productivity γ

when the level of automation diffusion j∗ is sufficiently large. This section explains

the mechanisms underlying the decrease in the wage presented in Proposition 3 and

4.

We assume that the fixed cost function, which was linear in the previous section

as (12), is a continuous, differentiable, and increasing function C(j), C ′ > 0. The

equation determining the technology choice threshold j∗ is transformed from (17) into

the following:
C(j∗) = (1− α)Y. (32)

In industry j∗, the price of intermediate goods is equal to the average cost because the

profit from automation technology is zero. The price depends on the demand for the

intermediate goods, which is proportional to Y from (5). The average cost includes

15 Acemoglu and Restrepo (2018b) suggest the possibility of a decrease in the wage when some

producers cannot utilize automation technology because of a technology frontier. The model

considering the technology frontier will be discussed in Section 5. Berg et al. (2018) also obtain

a result similar to that of Acemoglu and Restrepo (2018b) using a different model.
16 Acemoglu and Restrepo (2020b) analyze the effect of automation diffusion on labor markets,

including the wage by focusing on a skill difference. Then, they suggest theoretically and

empirically that the automation diffusion enhances the gap between the wages of low- and

high-skilled labor and the decline in the wage of low-skilled labor. In their model, low-skilled

labor performs tasks that automation technology is able to replace. Still, high-skilled labor is

not replaced because they are engaged in tasks that automation technology cannot perform.

However, as noted by Autor (2015), the progress of automation tends to encroach upward in

abstract tasks in that high-skilled labor is apt to engage. Thus, the approach of Acemoglu and

Restrepo (2020b) has a limitation. This paper proposes a mechanism for the decrease in the

wage that does not depend on skill differences.

16



the fixed cost. Thus, as shown in (32), Y is related to the fixed cost in industry j∗.

Since the fixed cost function is increasing in j∗, an increase in Y enhances automa-

tion diffusion j∗. Intuitively, this is because, as the output of final goods increases,

the difference between the returns from automation and non-automation technology

increases, enabling more industries to pay these fixed costs and thus introduce au-

tomation.

The wage in the steady state is

w = (1− j∗)Y,

⇔ logw = log(1− j∗) + log Y. (33)

Thus, the effect of an increase in j∗ on the logarithm of the wage is

d logw

dj∗
= − 1

1− j∗
+
d log Y

dj∗
. (34)

Following Acemoglu and Restrepo (2018b), we call the first term the displacement

effect, and the second term the productivity effect. The diffusion of automation tech-

nology captured by an increase in j∗ displaces labor because the industries in which

automation technology is newly introduced cease employing labor. The displacement

effect has a negative effect on the labor demand, and then on the wage. On the other

hand, automation diffusion has a positive effect on the wage through the increase in

the output of final goods. When the negative effect dominates the positive effect, the

wage decreases.

The scale of the productivity effect depends on the rate of change in the fixed cost

function from (32):
d log Y

dj∗
=
d logC(j∗)

dj∗
. (35)

From (34) and (35):
d logw

dj∗
= − 1

1− j∗
+
d logC(j∗)

dj∗
. (36)

The rate of change of the fixed cost function determines whether the wage increases

or decreases with the automation diffusion. When the rate of change is small enough,

the wage decreases since the negative displacement effect dominates the positive pro-

ductivity effect. In the model presented in Section 2, d logw/dj∗ < 0 when j∗ > 1/2
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because of the linear fixed cost function. The condition of linearity can be relaxed.

For example, when the fixed cost function is an exponential function C(j) = exp(a·j),

where a > 1, d logw/dj∗ < 0 when j∗ > 1 − 1/a. Even when limj→1 C(j) = ∞, the

wage can decrease when j∗ is high enough. Let us consider the case of the following

function.

C(j) =
exp(a1j + a3)

(1− j)a2
, where 0 < 1− a2 < a1, a2 > 0.

This function satisfies that limj→1 C(j) = ∞ and limj→1 C
′(j)/C(j) = ∞. In this

case, d logw/dj∗ < 0 when j∗ > (a1+a2−1)/a1. Therefore, the results of Proposition

3 and 4 hold even if the fixed cost function increases with j much more rapidly than

the linear function. For simplicity, we assume the linear function is specified as (12)

except for this subsection.

4.3 Effects of New Industries

Acemoglu and Restrepo (2018b) point out that the progress of automation technol-

ogy creates new tasks and show theoretically that this task creation, which increases

the tasks performed by non-automation technology, stimulates labor demand and in-

creases the wage. This subsection examines the effect of the creation of new industries

on wages. In Acemoglu and Restrepo (2018b), the displacement of labor by capital

due to the diffusion of automation technology is viewed as the factor that reduces the

wage, and the task creation is viewed as the countervailing factor that increases the

wage. By contrast, in this paper, task creation works as a factor reducing the wage.

In this subsection, to introduce new industries, the range of intermediate good

industries is modified to j ∈ [N − 1, N ]. The technology of final goods is rewritten as

log Yt =

∫ N

N−1

log yt(j)dj,

where N indicates the number of industries. An increase in N is interpreted as the

creation of new industries. This setup is the same as in Acemoglu and Restrepo
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(2018b). (23), (26) and (28) are rewritten as:

w = (N − j∗t )Yt,

ΦN (j∗t+1) =

(
Cj∗t+1

1− α

) 1
α(j∗

t+1
−(N−1))

(1− j∗t+1)

N−j∗t+1
α(j∗

t+1
−(N−1)) (j∗t+1 − (N − 1))γ−

1
α

ΨN (j∗t , j
∗
t+1) =

[
1 +

1− α

2α(1 + β)

j∗t+1 −N + 1

j∗t+1

]−1
βC

(1 + β)(1− α)
(N − j∗t )j

∗
t

From these equations, let us numerically demonstrate the effects of new industries

on the steady state. The values of α, β, and C are the same as before, and the

value of γ is 4.65. The range of N is set to (1, 1.15) and the parameter values ensure

the existence of a stable equilibrium. As N increases, the fixed cost for automation

technology increases.17

(Figure 2 around here)

Figure 2 demonstrates how each variable in the steady state depends on N . This

figure shows that an increase in N leads to a decrease in j∗, Y, and w. As in the

previous subsections, the effect on the wage is separated into two channels; the effect

through 1 − j∗ and the effect through Y . The effect of the former on the wage

is positive because an increase in N and the resulting decrease in j∗ stimulate labor

demand. However, the effect of the latter on the wage is negative because the decrease

in j∗ leads to a decrease in Y , and is stronger than the effect of the former. Thus, in

this model, the creation of new industries typically leads to a decrease in wages.18

17 When N is sufficiently large, fixed costs are too high to introduce the automation technology

even for managers in industry N − 1, and thus no one uses this technology. In this case, the

equilibrium conditions do not hold.
18 When γ is large, the decrease in Y is relatively gentle, and the negative effect is weak. Thus,

the total effect of N on the wage becomes positive when N is small. However, an increase in

N magnifies the decrease in Y and the corresponding negative effect. Therefore, even in this

case, the wage decreases with N when N is not small.
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5 Automation Technology Frontier

In the model in the previous section, automation technology is potentially applied

to all industries. However, some industries may not adopt automation because the

technology to automate them does not exist. Thus, this section considers the case in

which automated industries are limited to industry j ≤ j < j∗, where j is the upper

bound for automated industries. Managers in j ∈ (j, j∗] who want to introduce

automation cannot do so because of this technological limitation. Therefore, this

section examines the effects on the wage of the technological changes, in particular, an

improvement in automation productivity γ and an incremental change in automation

frontier j. The assumption regarding j is similar to that in the model of Acemoglu

and Restrepo (2018b). The differences between their model and the present one are

highlighted in this analysis.

In this section, the range of intermediate goods industries is the same as in Section

2, j ∈ [0, 1]. Managers in j ∈ [0, j] choose automation technology. Thus, the gross

interest rate (20), the wage (23), and the final goods (24) are rewritten as follows:

Rt =
αYt
Kt

· j̄, (37)

wt = (1− j)Yt, (38)

Yt =

[
γ

(
Kt

j

)α]j (
1

1− j

)1−j

. (39)

From (37), (38), savings (3), and the profits from automation technology (16), the

capital accumulation equation (27) becomes

Kt+1 =
β

1 + β
j(1− j)Yt −

Kt+1

α(1 + β)

[
(1− α)− Cj

2Yt+1

]
. (40)

At first, the following proposition examines the effect of γ on the wage.

Proposition 6. When a technological frontier j < j∗ exists, the effect of an increase

in γ on the wage is positive in the long run.

The proof of this proposition is provided in Appendix B. This proposition shows
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that an improvement in automation technology γ increases the wage. Since an increase

in γ does not influence the number of industries using automation technology, the

displacement effect does not emerge, and the productivity effect increases the wage.

Let us consider the effect of an incremental change in the automation frontier on

the wage. This effect is represented as the following equation from (38):

dw

dj
= −Y + (1− j)

dY

dj
. (41)

As in the previous section, we call the first term the displacement effect and the

second term the productivity effect.

To analyze the productivity effect, we differentiate (39) with respect to j:

dY

dj
=
∂Y

∂K

dK

dj
+
∂Y

∂j
,

= αj
Y

K

dK

dj
+ Y

[
(1− α) + log γ

(
K

j

)α
(1− j)

]
. (42)

The first term of (42) reflects the indirect effect through capital accumulation, and

the second term reflects the direct effect. From (40), the effect of an increase in j on

capital accumulation is

dK

dj
=

(
1 +

1− α

α(1 + β)
− Cj

2(1 + β)αY

)−1

×
[

β

1 + β
(1− 2j)Y +

CK

2(1 + β)αY
+

(
β

1 + β
j(1− j)− 1

Y

CKj

2(1 + β)αY

)
dY

dj

]
.

(43)

Equations (42) and (43) determine dK/dj and dY/dj. Because the signs of them are

not analytically clear, we conduct a numerical analysis.

(Figure 3 around here)

Figure 3 illustrates how the wage depends on γ and j.19 The x-axis is γ, the y-axis

is j, and the z-axis is the wage. The parameters are α = 0.3, β = 0.82, and C = 4.4.

The figure shows that when the level of j is sufficiently high (low), the effect of an

19 This figure focuses on the ranges of γ and j assuring the existence of a unique steady state.
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increase in j is negative (positive) when γ is sufficiently low or high. In the model of

Acemoglu and Restrepo (2018b), the wage always increases with j. By contrast, the

wage decreases in some ranges of γ and j in this model.

(Figure 4 around here)

To understand why the wage decreases with j when j is sufficiently large, we focus

on the productivity effect. As previously described, the first term of (42) corresponds

to the indirect effect through capital accumulation, and the second term reflects the

direct effect. Figure 4 shows how the amount of aggregate capital K depends on γ

and j. Since K is increasing in j from this numerical analysis, the indirect effect is

positive, which is identical to the result in Acemoglu and Restrepo (2018a).

By using (37) and (38), the direct effect is rewritten as follows:

∂Y

∂j
=

[(
log

1

w
− log

γ

Rα

)
+ α logα− (1− α) log Y + 1− α

]
Y. (44)

The part depending on effective factor prices is the effect pointed out by Acemoglu

and Restrepo (2018a) and many other models based on their work. The remaining

part of (44) emerges because the aggregate final goods production function (39) is

decreasing return to scale (when α = 1, the additional part disappears), and thus this

part decreases with Y .

In Acemoglu and Restrepo (2018b), the negative displacement effect is always

dominated by the positive productivity effect because of the indirect effect through

capital accumulation. In this model, the wage could decrease with j, as shown in

Figure 3, which means that the sum of the displacement effect and the productivity

effect could be negative. Because the displacement effect is the same as Acemoglu

and Restrepo (2018b), the productivity effect is smaller than their model and even

may be negative. One of the reasons for this difference is the decreasing return to

scale of the final good production function.

6 Subsidy Policy and Taxation

Sirkin et al. (2015) suggest that a high initial cost prevents the introduction of
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automation technology. This section introduce a subsidy to fixed costs financed by

tax on young households that encourage the diffusion of automation technology, and

examines the effects of such a policy. Since this model utilizes OLG setting, over-

accumulation of capital might occur. A subsidy on the introduction of automation

technology might possibly increase aggregate output and ultimately lead to an im-

provement in overall economic welfare. Let us consider a subsidy that compensates

a certain percentage of fixed costs and that is financed by a lump-sum tax on young

households.

This policy changes the budget constraint for young households such that

ct(j) = wt − st(j)− τt, (45)

where τ represents the lump-sum tax. The profit from automation technology is

πkt (j) = max
kt(j)

pt(j)y
k
t (j)−Rtkt(j)− (1− σ)C(j), (46)

where σ ∈ [0, 1] is the subsidy rate. A policymaker’s budget constraint is

τt =

∫ j∗t

0

σC(j)dj. (47)

This section numerically examines the effects of this subsidy. The parameters are

the same as in the previous numerical example except for γ (γ = 4.65). The values

of γ and C ensure that a unique steady state exists.

(Figure 5 around here)

Figure 5 illustrates the effects of the subsidy on the wage, the final good production

Y , the extent of automation technology diffusion j∗, aggregate capital K, interest rate

R, and economic welfare at the steady state. Welfare is measured by the aggregation

of each household’s lifetime utility. Figure 5 shows that this subsidy encourages the

adoption of automation technology because it reduces the associated fixed costs. Thus,

the automation technology diffusion level increases when the subsidy rate increases.

Automation diffusion leads to a decline in 1 − j∗, but an increase in Y . Therefore,

as in the previous section, this subsidy has both positive and negative effects on the
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wage. Figure 5 shows that the negative effect dominates the positive effect, and thus

the subsidy decreases the wage.20 Aggregate capital K declines because the increase

in tax and the decrease in the wage depress savings. R increases with σ because the

decrease in the supply of capital caused by the decrease in savings and the increase in

the demand for capital resulting from the increases in j∗ and Y have negative effects

on R.

Figure 5 also shows that as the subsidy rate σ increases, welfare increases at first;

however, it subsequently decreases. The welfare of each household is determined by

lifetime income and R. The lifetime income is

wt − τt +
πit+1(j)

Rt+1
, for i = l, k, j ∈ [0, 1], (48)

where πℓt+1(j) = 0, πkt+1(j) = (1− α)Yt+1 − (1− σ)C(j). (49)

Increases in R and τ and a decrease in w depress the lifetime income, and an increase

in the profits net of the payment of fixed costs driven by increases in Y and σ increases

the lifetime income. The increase (decrease) in the lifetime income pulls up (pushes

down) the welfare. R has not only an indirect effect through lifetime income, but

also a direct effect on the welfare because R increases the value of savings. When

the positive effects are larger (smaller) than the negative effects, welfare increases

(decreases). Figure 5 shows that average welfare increases when σ is low and decreases

when σ is high. The reason for the increase in welfare for a low σ may be that the

policy solves over-accumulation of capital by imposing tax, which decreases K and

increases R.

In this model, there are different types of households. Some households may not

receive benefits from the subsidy policy, particularly those households that do not

choose automation technology in response to the subsidy policy because of the high

fixed costs (thereafter called Non-automation type). These households receive no di-

rect gain from the policy. In addition, households that face zero fixed costs (thereafter

called Zero fixed cost type) also receive no direct gains.

20 If we set a different parameter set, for example, a larger γ, the positive effect becomes stronger,

and a region in which the wage increases with σ emerges.
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Let us consider the dynamics of their welfare to examine whether there exist sub-

sidy rates that benefit every household of every generation. At first, the economy is

in a steady state, and the subsidy policy is unexpectedly enforced in Period 3.

(Figure 6 around here)

(Figure 7 around here)

Figure 6 illustrates the dynamics of the welfare of households who are old in period

t. The upper left panel illustrates the dynamics of the average welfare of households.

The upper right panel illustrates the welfare of the Non-automation type, and the

lower left panel illustrates the welfare of the Zero fixed cost type. In each panel, the

blue line (round), green line (square), and red line (diamond) indicate the dynamics

when the subsidy rate, σ, is 0.01, 0.04, and 0.06, respectively. The black (dotted)

line in each panel indicates the welfare level in the steady state without the subsidy

policy. Figure 7 demonstrates the dynamics of the lifetime income of each type of

household examined in Figure 6 and of the interest rate. The blue (round), green

(square), and red (diamond) lines indicate the dynamics when σ is 0.01, 0.04, and

0.06, respectively. The black (dotted) lines indicate the levels without the policy.

The upper left panel of Figure 6 shows that the subsidy policy improves average

welfare compared with the steady state economy without the subsidy policy at any

time. However, not all households may benefit from the policy. Figure 6 focuses on

two types of households — the Non-automation type and the Zero fixed cost type —

that receive no direct gain from the policy.21

The upper right panel of Figure 6 illustrates that the welfare of the Non-automation

type households increases in Period 4, and that their welfare in subsequent periods is

greater than their welfare without the policy.22 They pay the tax during the young

21 Households with positive fixed costs that introduce automation technology obtain greater ben-

efits than the two types of households.
22 Welfare of old households of the Non-automation type and the Zero fixed cost type in Period

3, in which the policy is implemented, are the same as in previous periods. Figure 7 shows

that R and their lifetime income in Period 3 are the same as in previous periods. The subsidy

policy does not influence R in Period 3 since the supply of capital depends on savings in Period
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period and receive no subsidy. From Figure 7, their lifetime income after the policy

is lower in all cases than in the steady state without the policy. However, since R

after the policy is greater than the level without the policy in Figure 7, their income

during the old period, funded by savings, is higher. The positive effect is dominant,

and their welfare improves.

The lower left panel of Figure 6 shows that the welfare of the Zero fixed cost type

households after Period 5 is greater than their welfare without the policy, while their

welfare in Period 4 is lower when σ is 0.01 and greater when σ is 0.04 and 0.06 than

the welfare without the policy.

Since households that introduce automation technology by paying positive fixed

costs receive the subsidy directly, they gain greater benefits from the policy than the

Non-automation type and the Zero fixed cost type households. Thus, when σ are 0.04

and 0.06, all households of all generations benefit from the policy.23 However, when σ

is sufficiently high, an increase in σ decreases the average welfare; consequently, many

households do not benefit from a marginal increase in the subsidy rate.

7 Conclusion

This paper investigates the effects of fixed costs on automation technology diffusion

and examines the relationship between the diffusion and the wage. In this model,

households choose either automation or non-automation technology for production;

when the households choose the automation technology, they pay fixed costs. Thus,

their choice determines the extent of automation technology diffusion and fixed costs

play an essential role in their decision.

2, and the demand for capital depends on the technology choice made at the end of Period 2.

Lifetime income of these households do not change because their profits in Period 3 are not

influenced by the policy, i.e., π = 0 for the Non-automation type and π = (1−α)Y for the Zero

fixed cost type, where Y is determined by K and j∗ Thus, while the subsidy policy increases

the lifetime income of old households with positive fixed costs in Period 3, who introduce

automation technology, it does not affect the lifetime income of the two types examined in

Figure 7 in Period 3.
23 When σ is from about 0.032 to 0.068, the welfare of every household of every generation

increases by the policy. When σ is over 0.068, some households suffer welfare loss.
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The analysis in this paper yields two notable results. First, the wage can decrease

with an improvement in automation productivity or decreases in fixed costs, both of

which accelerate automation diffusion. The diffusion has both positive and negative

effects on the wage. The positive (negative) effect dominates in the long-run when

the extent of automation technology diffusion is low (high) enough. In Acemoglu and

Restrepo (2018b), the wage increases in the long-run because of the positive effect

through capital accumulation. By contrast, in this study, the wage decreases when

the level of diffusion is sufficiently high, even in the presence of capital accumulation.

Second, the labor income share, which is the sum of the income share of workers

and managers, decreases with automation diffusion. This result is consistent with the

recent empirical studies that point out a declining labor income share over the last

several decades (Karabarbounis and Neiman, 2014; Grossman et al., 2017; Alvarez-

Cuadrado et al., 2018).

Subsequently, this paper examines two extensions of this model. First, we introduce

an automation technology frontier. This setting is the same as that in Acemoglu and

Restrepo (2018b). Because of the technology frontier, automation is not available

to some industries. In contrast to Acemoglu and Restrepo (2018b), in which an

expansion of the frontier always increases the wage in the long-run, in this study, it

can decrease the wage in the long-run. Second, this paper explores the long- and

short-run effects of a subsidy policy for fixed costs on the economy. The analysis

demonstrates that such a subsidy policy has both positive and negative effects on

the long-run wage and welfare. This paper shows that there exist subsidy rates that

improve the welfare of all households of all generations.
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Appendix A. Existence and Stability of Unique Steady State

In the main part of this paper, Proposition 1 shows the existence of a unique steady

state, and Proposition 2 examines its stability. In this section, we show the condition

of the existence and the stability in a more formal way. Proposition A.1 corresponds

to Proposition 1, and Proposition A.3 and A.4 corresponds to Proposition 2.

A.1 Existence of Unique Steady State

In the main part of the paper, the two types of capital dynamics are described as:

Kt = Φ(j∗t ) (A1)

Kt+1 = Ψ(j∗t ) (A2)

where Φ(j∗t ) =

(
Cj∗t
1− α

) 1
αj∗t

(1− j∗t )
1−j∗t
αj∗t j∗t γ

− 1
α (A3)

Ψ(j∗) =
2αβC

(1− α){2α(1 + β) + (1− α)}
(1− j∗t )(j

∗
t ). (A4)

Let us express these dynamics in logarithmic form.

ϕ(j∗t+1) ≡ log Φ(j∗t+1) = log(
Cj∗t+1

1− α
)

1
αj∗

t+1 (1− j∗t+1)

1−j∗t+1
αj∗

t+1 j∗t+1γ
− 1

α , (A5)

ψ(j∗t ) ≡ logΨ(j∗t ) = logAC(1− j∗t )(j
∗
t ), (A6)

where A ≡ 2αβ

(1− α){2α(1 + β) + (1− α)}
, (A7)

lim
j→0

ϕ(j∗t+1) = −∞, lim
j→1

ϕ(j∗t+1) =
1

α
log

(
C

γ(1− α)

)
, (A8)

lim
j→0

ψ(j∗t ) = −∞, lim
j→1

ψ(j∗t ) = −∞. (A9)

Taking the limits of ϕ(j∗t+1) and ψ(jt) to zero and one; For simplicity, we ignore the

time scripts. The gap between ϕ and ψ is

ϕ(j∗)− ψ(j∗) =

1

j∗α

(
log(

C

1− α
)− j∗ log(γ(AC)α) + log j∗ + (1− j∗(1 + α)) log(1− j∗)

)
. (A10)

Thus, limj∗→0 ϕ(j
∗)− ψ(j∗) = −∞ and limj∗→1 ϕ(j

∗)− ψ(j∗) = ∞
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Therefore, if the slope of ϕ is higher than ψ in [0, 1], the fixed point is unique. The

gap of the slope between ϕ and ψ is

∂ϕ(j∗)

∂j∗
− ∂ψ(j∗)

∂j∗
=

1

α(j∗)2(1− j∗)

{
(1− j∗)

(
log(

1− α

Cj∗(1− j∗)
) + 1− j∗

)
+ (j∗)2α

}
(A11)

≡ 1

α(j∗)2(1− j∗)
Q(j∗)

The limits of Q(j∗) are:

lim
j∗→0

Q(j∗) = ∞, (A12)

lim
j∗→1

Q(j∗) = α. (A13)

We take the differential with respect to j∗,

∂Q(j∗)

∂j
= Q′(j∗) = log(

Cj∗(1− j∗)

1− α
) + 2(1 + α)j∗ − 1

j∗
. (A14)

And we differentiate Q(j∗) with respect to j∗ one more time,

∂2Q(j∗)

∂(j∗)2
=

−2(1 + α)(j∗)3 + 2α(j∗)2 + 1

(j∗)2(1− j∗)
. (A15)

(Figure A.1 around here)

Let Qn(j
∗) be the numerator of the above equation. Since the denominator is

positive, the sign of Qn(j
∗) determines the sign of Q′′(j∗). The limits of Qn(j

∗) are

limj∗→0Qn(j
∗) = 1 and limj∗→1Qn(j

∗) = −1. Because Q′
n(j

∗) = [−6(1 + α)j∗ +

4α]j∗, the smaller extreme point of Qn(j
∗) is zero and its other extreme point is in

[0, 1]. Thus, Qn(j
∗) = 0 has one solution in [0, 1] and Qn(j

∗) > 0 for smaller j∗ and

Qn(j
∗) < 0 for larger j∗ (see Figure A.1 (a)). Therefore, Q′(j∗) is an inverse U-shaped

function (see Figure A.1 (b1) and (b2)). When the maximized value of Q′(j∗) in [0, 1]

is negative or when the value of Q(j∗) evaluated at the smaller solution for Q′(j∗) = 0

is positive, the slope of ϕ is higher than ψ and a unique steady state exist (see figures

except (a) in Figure A.1).

The above discussion describes the sketch of the following proposition. It shows

the condition of the existence of a unique steady state in a more formal way than

Proposition 1.
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Proposition A.1.

(1) If the following condition holds, the maximized value of Q′(j∗) in [0, 1] is negative,

Q(j∗) > 0 and a unique steady state exists:

C < C1, (A16)

where C1 =
(1− α)e

[−2(1+α)js1+ 1
js1

]

js1[1− js1]
,

js1 =
1

1 + α

(
3

√
ν +

1 + α

2

√
ν +

3

√
ν − 1 + α

2

√
ν +

α

3

)
,

ν =
(1 + α)2

4
+
α3

27
.

(2) If the following condition holds, the maximized value of Q′(j∗) in [0, 1] is positive

and the value of Q(j∗) evaluated at the smaller solution for Q′(j∗) = 0 is positive,

Q(j∗) > 0 and a unique steady state exists:

C1 < C < C2, (A17)

where C2 =
(1− α)e

[−2(1+α)js2+ 1
js2

]

js2[1− js2]
, and (A18)

js2 is the unique solution of the following equation in [0, 1]:

−(1 + α)(js2)3 + 2α(js2)2 + 2(js2)− 1 = 0. (A19)

Proof of Proposition A.1.

(1) This case is illustrated in the upper row of Figure A.1. As shown in the paragraph

just below (A15 ), Qn(j
∗) = 0 has one solution js1 in [0, 1]. By applying Cardano

formula, we obtain the value of js1. (A16 ) is derived from Q′(js1) < 0.

(2) This case is illustrated in the lower row of Figure A.1. When Q′(js1) > 0 and

thus C > C1, Q
′(j∗) = 0 has two solutions (Figure A.1 (b2)). Let jm be the smaller
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solution. When Q(jm) > 0, Q(j∗) > 0 for any j∗ ∈ [0, 1] and a unique steady state

exists in [0, 1]. Since Q′(jm) = 0, from (A14 ),

logC = log
1− α

jm(1− jm)
− 2(1 + α)jm +

1

jm
. (A20)

By using (A20 ), the condition for the uniqueness of the solution is:

Q(jm) = (1− jm)

(
log(

1− α

Cjm(1− jm)
) + 1− jm

)
+ (jm)2α > 0

⇔ −(1 + α)(jm)3 + 2α(jm)2 + 2jm − 1 > 0. (A21)

Let QL(j) be the left-hand side of (A21 ). The values of QL(j) at endpoints are

QL(0) = −1 and QL(1) = α. Because Q′′
L(j) = −6(1 + α)j + 4α, the inflection point

j = 4α/6(1 + α) is in (0, 1). Thus, since QL(j) is a cubic function, QL(j) = 0 has

one solution in (0, 1). Let the solution js2, and thus Q(jm) = 0 when jm = js2.

Therefore, Q(jm) > Q(js2) = 0 is the condition of the existence of a unique steady

state from (A21 ).

Then, we show the existence of C2, which is the level of the fixed cost satisfying

Q(jm) = 0. When C > C1, the graphs are illustrated as the lower row in Figure

A.1. From (A11 ), Q(j∗) shifts down as C increases since dQ(j∗)/dC < 0, and

limC→∞Q(j∗) = −∞. Thus, there exists C2 such that Q(jm) = 0. Therefore, when

C1 < C < C2, as illustrated by Figure A.1 (c2), Q(jm) > 0 and there exists a unique

steady state.24 (A18 ) is derived from (A20 ) when Q(jm) = 0.

A.2 Stability of Unique Steady State

In this section, we confirm the stability of the dynamic system of this model. The

steady state level of j∗t is denoted by j∗ below. We divide two cases in terms of j∗:

j∗ ≤ 1/2 and j∗ > 1/2. For the former case, the global stability holds as shown below

by Proposition A.3. For the latter case, the local stability holds when j∗ is small

24 We also examine the condition of existence of a unique steady state when C > C2, and shows

that a unique equilibrium or multiple equilibria occur depending on the parameters. This

paper focuses on the case of a unique equilibrium for simplicity.
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enough. Proposition A.4 shows conditions under which there exists a threshold level

of j∗ such that the dynamic system is locally stable (unstable) when j∗ is smaller

(larger) than the threshold. In this section, we assume that a unique steady state

exists as shown by Proposition A.1 and that ϕ is a monotonically increasing function.

At first, we derive the condition of the monotonicity, then show the stability of the

dynamic system.

A.2.1. The Monotonicity of ϕ

To examine the stability of the dynamic system, ϕ and ψ, we derive the condition

to assure that ϕ is a monotonically increasing function. From (A5 ), if differentiate

ϕ(j∗t+1) with respect to j∗t+1,

∂ϕ(j∗t+1)

∂j∗t+1

=
1

α(j∗t+1)
2

[
log

(
1− α

Cj∗t+1(1− j∗t+1)

)
+ 1− (1− α)j∗t+1

]
. (A22)

We define the bracket of this equation as ϕ̃(j∗t+1). We differentiate ϕ̃(j∗t+1) with

respect to j∗t+1,

∂ϕ̃(j∗t+1)

∂j∗t+1

=
1

j∗t+1(1− j∗t+1)

[
(1− α)(j∗t+1)

2 + (1 + α)j∗t+1 − 1
]
. (A23)

Let js be the value in [0, 1] when the bracket is equal to zero. Then,

js =
−(1 + α) +

√
(1 + α)2 + 4(1− α)

2(1− α)
. (A24)

For j∗t+1 < js, ∂ϕ̃(j∗t+1)/∂j
∗
t+1 < 0 and ϕ̃(j∗t+1) is decreasing function, and for

j∗t+1 > js, ϕ̃(j∗t+1) is an increasing function. Thus, ϕ̃(j∗t+1) is minimized at j∗t+1 = js.

Therefore, when ϕ̃(js) > 0, ∂ϕ(j∗t+1)/∂j
∗
t+1 > 0 and ϕ(j∗t+1) increases monotonically.

From (A22 ), ϕ̃(js) > 0 corresponds to the following condition;

C <
(1− α)e1−(1−α)js

js(1− js)
(A25)

From the above discussion, the following proposition is obtained:

Proposition A.2.

If C < (1−α)e1−(1−α)js

js(1−js) , where js =
−(1+α)+

√
(1+α)2+4(1−α)

2(1−α) , ϕ increases monotonically

in [0, 1].
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A.2.2. The Global Stability When j∗ ≤ 1/2

We show the global stability when j∗ ≤ 1/2. Suppose that Proposition A.1 and

A.2 hold. From (A1 ) and (A5 ) and the monotonicity of ϕ,

j∗t+1 = ϕ−1[logKt+1]. (A26)

The dynamic system satisfies ϕ(j∗t+1) = ψ(j∗t ) from (29). Thus, by substituting

(A2 ) into (A26 ),
j∗t+1 = ϕ−1[ψ(j∗t )] ≡ h(j∗t ). (A27)

We examine the function h(j∗t ). The derivative of h(j∗t ) is

dh(j∗t )

dj∗t
=

dψ(j∗t )/dj
∗
t

dϕ(j∗t+1)/dj
∗
t+1

(A28)

Whether h(j∗t ) is an increasing function or a decreasing function depends on the

derivatives of ϕ(j∗t+1) and ψ(j∗t ). Because Proposition A.2 holds, ϕ(j∗t+1) is an in-

creasing function. ψ(j∗) is increasing for j∗t ≤ 1/2 and decreasing for j∗t > 1/2.

Hence, h(j∗) is increasing for j∗t ≤ 1/2 and decreasing for j∗t > 1/2 from (A28 ).

Moreover, the following two condition hold:

lim
j∗t →0

h(j∗t ) = 0 and lim
j∗t →0

h′(j∗t ) = ∞. (A29)

The latter holds because limj∗t →0 dψ(j
∗
t )/dj

∗
t = ∞ from (A6 ) and ϕ is an increasing

function. The reason of the former is that limj∗t →0 ψ(j
∗
t ) = −∞ from (A9 ), and

limψ(j∗t )→−∞ ϕ−1[ψ(j∗t )] = 0 because limj∗t+1→0 ϕ(j
∗
t+1) = −∞ from (A8 ) and ϕ is an

increasing function.

Figure A.2 illustrate h(j∗t ) and patterns of convergence. The upper two panels in

Figure A.2 illustrate that j∗t+1 > j∗t (j∗t+1 < j∗t ) when j
∗
t < j∗ ≤ 1/2 (j∗ < j∗t ≤ 1/2),

and j∗t converges to j∗. The lower two panels illustrate that when j∗t > 1/2 and

j∗t+1 ≥ j∗, j∗ < j∗t+2 < j∗t+1 < 1/2, and when j∗t > 1/2 and j∗t+1 < j∗, j∗t+1 < j∗t+2 <

j∗. Therefore, when j∗ ≤ 1/2, this dynamic system is globally stable.

From the above discussion, the following proposition is obtained:

Proposition A.3. Suppose that Proposition A.1 and A.2 hold. Then, if j∗ ≤ 1/2,

the steady state is globally stable.
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(Figure A.2 around here)

A.2.3. The Local Stability When j∗ > 1/2

Then, we consider the case of j∗ > 1/2. Suppsoe that Proposition A.1 and A.2

hold. From (A5 ), (A6 ) and (A28 ),

dj∗t+1

dj∗t
=

−
[

1
1−j∗t

− 1
j∗t

]
1

α(j∗t+1)
2

{[
1− log

Cj∗t+1

1−α

]
− log(1− j∗t+1)− (1− α)j∗t+1

} . (A30)

To assure local stability, the following condition is necessary:∣∣∣∣dj∗t+1

dj∗t

∣∣∣∣
j∗t =j

∗
t+1=j

∗
< 1 ⇔ −1 < −−dψ(j∗)/dj∗

dϕ(j∗)/dj∗
< 1. (A31)

When Proposition A.2 holds, dϕ/dj∗ > 0. Thus, (A31 ) is equivalent to:

dϕ(j∗)

dj∗
+
dψ(j∗)

dj∗
> 0 and

dϕ(j∗)

dj∗
− dψ(j∗)

dj∗
> 0 (A32)

Evaluating the conditions above at a steady state, dϕ(j∗)/dj∗−dψ(j∗)/dj∗ is equiv-

alent to (A11 ). Thus, the latter condition is satisfied when Q(j) > 0 for any j ∈ [0, 1].

Because Proposition A.1 holds, Q > 0, and thus the latter condition is satisfied.

The former condition of (A32 ) is:

dϕ(j∗)

dj∗
+
dψ(j∗t )

dj∗
=

1

α(j∗)2(1− j∗)
Z(j∗) > 0, (A33)

where Z(j∗) ≡ (1− j∗)

(
log(

1− α

Cj∗(1− j∗)
) + 1− j∗

)
+ 2αj∗(1− j∗)− α(j∗)2.

(A34)

When j∗ = 1/2, Q(j∗) = Z(j∗) from(A11 ). This relationship implies that[
dϕ(j∗)

dj∗
+
dψ(j∗)

dj∗

]∣∣∣∣
j∗=1/2

=

[
dϕ(j∗)

dj∗
− dψ(j∗)

dj∗

]∣∣∣∣
j∗=1/2

. (A35)

Because Q(j∗) > 0 for any j∗ when Proposition A.1 hold, dϕ(j∗)
dj∗ − dψ(j∗)

dj∗ > 0 from

(A11 ). Hence, dϕ(j∗)
dj∗ + dψ(j∗)

dj∗ > 0 around j∗ = 1/2, and thus the dynamic system

is locally stable. Because limj∗→1 Z(j
∗) = −α, the steady state is unstable around

j∗ = 1. This means that both stable areas and unstable areas exist in j∗ ∈ (1/2, 1].
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We derive the sufficient conditions that there exists a unique threshold, which divides

the stable area with the unstable area. Before presenting a proposition, we show the

following lemma.

Lemma A.1. Suppose that Proposition A.1 and A.2 hold. Then, in j∗ ∈ (1/2, 1],

Z ′′(j∗) = 0 has only one solution jz1, and Z ′′ is positive for j∗ < jz1 and negative

for j∗ > jz1.

Proof of Lemma A.1. From (A34 ), the second derivative of Z is:

∂2Z(j∗)

∂(j∗)2
=

2(3α− 1)(j∗)3 − 6α(j∗)2 + 1

(j∗)2(1− j∗)
. (A36)

The numerator determines the sign of Z ′′. When j∗ = 0 and j∗ = 2α/(3α − 1), it

achieves extreme values. Taking the limits to 1/2 and 1, the numerator of Z ′′ are:

lim
j∗→1/2

[2(3α− 1)(j∗)3 − 6α(j∗)2 + 1] =
3

4
(1− α) > 0

lim
j∗→1

[2(3α− 1)(j∗)3 − 6α(j∗)2 + 1] = −1.

Taking it into account that the numerator is the cubic function and the above two

values, the shape of Z ′′ is one of the two forms depicted in Figure A.3. In both cases,

Z ′′(j∗) = 0 has only one solution jz1 in j∗ ∈ (1/2, 1], and Z ′′ is positive for j∗ < jz1

and negative for j∗ > jz1.

(Figure A.3 around here)

Next, we consider when there is a unique threshold dividing the area featuring

stable steady state with the area featuring unstable steady state. As we described,

this is satisfied when Z(j∗) = 0 has a unique solution. To examine the shape of Z(j∗),

we focus on the relationship between Z(j∗) and Z ′(j∗), which is illustrated in Figure

A.4.

Lemma A.1 implies that Z ′(j∗) has a single peak. Z ′(j∗) equals

Z ′(j∗) =
1

j∗

[
j∗ log

{
Cj∗(1− j∗)

1− α

}
+ 2(1− 3α)(j∗)2 + 2αj∗ − 1

]
. (A37)
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Taking the limits to 1/2 and 1, the values of Z ′(j∗) are:

lim
j∗→1/2

Z ′(j∗) = log

{
C

4(1− α)

}
− (1 + α), (A38)

lim
j∗→1

Z ′(j∗) = −∞. (A39)

If (A38 ) is non-negative, that is C ≥ 4(1 − α)e1+α ≡ Cz1, since Z ′(j∗) has a

single peak, Z ′(j∗) = 0 has a unique solution in j∗ ∈ [1/2, 1], and thus Z(j∗) has a

single peak in [1/2, 1]. Z(j∗) is positive around j∗ = 1/2 since Z(1/2) = Q(1/2), and

negative around j∗ = 1 since limj∗→1 Z(j
∗) = −α. Thus, Z(j∗) = 0 has also a unique

solution (see Figure A.4 (a)).

If (A38 ) is negative, Z ′(jz1) ≤ 0 or Z ′(jz1) > 0. Since Z ′(jz1) is extreme value of

Z ′(j∗), Z ′(j∗) ≤ 0 in j∗ ∈ [1/2, 1] when Z ′(jz1) ≤ 0. Thus, Z(j∗) is weakly decreasing

in j∗, and Z(j∗) = 0 has a unique solution (see Figure A.4 (b1)). When Z ′(jz1) > 0,

Z ′(j∗) = 0 has two solutions. Let the solutions be jz2 and jz3, and assume that

jz2 < jz3. The extreme values, Z(jz2) and Z(jz3), determine the shape of Z(j∗).

When Z(jz2) > 0, Z(j∗) = 0 has one solution between jz3 and 1 (see Figure A.4

(b21)). When Z(jz2) < 0, if Z(jz3) < 0, Z(j∗) = 0 has one solution between 1/2 and

jz2 (see Figure A.4 (b23)).

Following proposition is obtained from the above discussion:

Proposition A.4. Suppose that Proposition A.1 and Proposition A.2 hold, and that

j∗ > 1/2. Unless the following condition holds, there is a unique threshold of j∗, and

the dynamic system is locally stable (unstable) for smaller (larger) j∗:

Cz2 ≤ C ≤ Cz3, (A40)

where Cz2 =
(1− α)e

−α(jz2)2

1−jz2
+(2α−1)jz2+1

jz2(1− jz2)
, (A41)

Cz3 =
(1− α)e

−α(jz3)2

1−jz3
+(2α−1)jz3+1

jz3(1− jz3)
(A42)

and jz2 and jz3 are solutions of Z ′(j) = 0 and jz2 < jz3.
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Proof of Proposition A.4. Above this proposition, we explained all cases in which

there exists a unique threshold of j∗ such that the dynamic system is locally stable

for j∗ smaller than the threshold. When Z(j∗) = 0 has multiple solutions, there does

not exist such unique threshold. Since dZ(j∗)/dC < 0 from (A34 ), an increase in C

shifts down Z(j∗). Let Cz2 (Cz3) be C satisfying Z(jz2) = 0 (Z(jz3) = 0), where

jz2 < jz3. When Cz2 ≤ C ≤ Cz3, Z(j∗) = 0 has multiple solutions (see Figure A.4

(b22)). Because Z(j∗) has a unique solution when C < Cz2 and C > Cz3 (see Figure

A.4 (b21) and (b23)), there exists the unique threshold of j∗ unless Cz2 ≤ C ≤ Cz3.

(A41 ) and (A42 ) are derived from (A34 ) evaluated at jz2 and jz3.

(Figure A.4 around here)

Following figures show graphically the cases of dynamics. In each figure, the solid

line and the dot line represents ϕ(j∗t+1) and ψ(j∗t ), respectively. Since j∗t = j∗t+1

in the steady states, the intersections correspond to the steady states. Figure A.5

demonstrates the case of the unique steady state with monotonic convergence, and

Figure A.6 does the case of the unique steady state with cyclical convergence.

(Figure A.5 around here)

(Figure A.6 around here)

Appendix B. Proofs of Propositions

B.1. The Proofs of Proposition 3 and 4

At first, we propose a lemma that shows the relationship between γ and j∗.

Lemma B.1.

Suppose that Proposition A.1 holds. Then:

dj∗

dγ
> 0

dj∗

dC
< 0
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Proof of Lemma B.1. When Proposition A.1 holds, ϕ(j∗) − ψ(j∗) in the unique

steady state is increasing in j∗ since Q(j∗) > 0, j∗ ∈ [0, 1]. From (A11 ), in the

steady state,

dΩ(j∗)

dj∗
=

1

α(j∗)2(1− j∗)
Q(j∗) > 0, (B1)

where Ω(j∗) ≡ ϕ(j∗)− ψ(j∗). (B2)

Since ϕ(j∗)−ψ(j∗) = 0 in the steady state, by applying the Implicit Function Theorem

to (A10 ),

dj∗

dγ
=

1

γα

(
dΩ(j∗)

dj∗

)−1

> 0. (B3)

dj∗

dC
= −1− αj∗

Cαj∗

(
dΩ(j∗)

dj∗

)−1

< 0. (B4)

By using this lemma, Propositions 3 is proved.

Proof of Proposition 3. From (17) and (23) in the main script, the wage in a

steady state are characterized by j∗,

w = j∗(1− j∗)
C

1− α
. (B5)

Thus, the first order differentiation with respect to γ is

dw

dγ
=
dw

dj∗
dj∗

dγ
=
C(1− 2j∗)

1− α

dj∗

dγ
. (B6)

Since dj∗/dγ > 0 from Lemma B.1, (B6 ) implies that if the threshold at equilib-

rium j∗ is lower than 1/2, the productivity improvement of automation technology

pushes the wage up. On the other hand, if j∗ > 1/2, it pulls the wage down.

Proof of Proposition 4. Suppose that the condition of Proposition A.1 holds. From
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(B1 ), (B4 ) and (B5 ),

dw

dC
=
∂w

∂C
+
∂w

∂j∗
dj∗

dC

=
j∗(1− j∗)

1− α

[
1 +

(1− αj∗)(2j∗ − 1)

Q(j∗)

]
=

j∗(1− j∗)

(1− α)Q(j∗)
[Q(j∗) + (1− αj∗)(2j∗ − 1)]

=
j∗(1− j∗)

(1− α)Q(j∗)
Wc(j

∗), (B7)

where Wc(j
∗) ≡ Q(j∗) + (1− αj∗)(2j∗ − 1). (B8)

From Proposition A.1, Q(j∗) > 0 for j∗ ∈ (0, 1). If j∗ ≥ 1/2, since (1−αj∗)(2j∗−1) ≥

0, Wc > 0 and thus dw/dC > 0. If j∗ < 1/2, there exists the region of j∗ in which

dw/dC < 0 depending on C. We show below that there exists a threshold Cw2, and

dw/dC > 0 for all j∗ when C < Cw2.

The second derivative of Wc(j
∗) is:

W ′′
c (j

∗) = Q′′(j∗)− 4α. (B9)

Because Q′′(j∗) is a decreasing function for j∗ ∈ (0, 1/2) and Q′′(1/2) = 2α+6 > 4α

from (A15 ), W ′′
c (j

∗) > 0 for j∗ ∈ (0, 1/2). Thus, W ′
c(j

∗) = Q′(j∗)− 4αj∗ + α+ 2 is

an increasing function for j∗ ∈ (0, 1/2). Because limj∗→0W
′
c(j

∗) = −∞, Wc(j
∗) for

j∗ ∈ (0, 1/2) is a decreasing function when W ′
c(1/2) ≤ 0, and is an U-shaped function

when W ′
c(1/2) > 0. Figure B.1 illustrates the two cases: the upper row shows the

former case and the lower row shows the latter case.

For the former case, since Proposition A.1 assures Q(1/2) > 0, Wc(1/2) > 0 from

(B8 ). Therefore, if the following condition holds, Wc(j
∗) > 0 and thus dw/dC > 0

for j∗ ∈ (0, 1/2):

W ′
c(1/2) ≤ 0 ⇔ C ≤ Cw1 ≡ exp{log[4(1− α)]− 1}. (B10)

When Wc(j
∗) is an U-shaped function, if the value of Wc(j

∗) at the extreme point

jc is positive, that is Wc(j
c) > 0, dw/dC > 0 for j∗ ∈ (0, 1/2). Since an increase in

C lowers Q from (A11 ), it also lowers Wc from (B8 ). Let Cw2 be the level of C
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and jcc be the level of jc such that Wc(j
c) = 0 Then, when following condition holds,

dw/dC > 0 for any j∗:

C < Cw2 ≡
(1− α) exp

[
(1−α)(jcc)2+αjcc

1−jcc

]
jcc(1− jcc)

, (B11)

where − (1− α)(jcc)3 − 2α(jcc)2 + (3 + α)jcc − 1 = 0. (B12)

Conversely, when C ≥ Cw2, there exists the region of j∗ in which dw/dC ≤ 0. The

rightmost two figures at the lower row in Figure B.1 illustrate the cases of C < Cw2

and C ≥ Cw2. The figure of the case of C ≥ Cw2 shows that Wc(j
∗) > 0 and thus

dw/dC > 0 when j∗ is sufficiently small and sufficiently large, and Wc(j
∗) < 0 and

thus dw/dC < 0 when j∗ is intermediate.

We numerically examine the relationship between Cw1, Cw2 and C2 because the

relationship affects the sign of the marginal impact on the wage, but the relationship

cannot be derived analytically. From (A18 ), (A19 ), (B10 ), (B11 ) and (B12 ), Cw1,

Cw2, and C2 depend only on α. Proposition A.1 shows that C < C2 is the condition

of the existence of a unique steady state. Thus, if Cw2 < C2 for any α, the region in

which dw/dC ≤ 0 could exist when C ≥ Cw2. Figure B.2 illustrates the relationship

between Cw1 (red circle), Cw2 (black diamond), C2 (blue square) and α. The figure

shows Cw1 < Cw2 < C2 for all α. Because Cw2 < C2, when Cw2 ≤ C < C2, there

exists the region in which dw/dC ≤ 0. From the graph of Wc(j
∗) in the bottom right

figure of Figure B.1, Wc > 0 ⇔ dw/dC > 0 when j∗ ∈ (0, 1/2) is low enough and

high enough, and Wc ≤ 0 ⇔ dw/dC ≤ 0 when j∗ is intermediate.

B.2. The Proof of Proposition 5

From (17) and (11) in the main script, aggregate profit of managers at the steady

state is:

Π ≡
∫ j∗

0

πk(j)dj +

∫ 1

j∗
πl(j)dj =

1

2
C(j∗)2 + 0 =

1

2
C(j∗)2. (B13)
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The aggregate fixed cost is:

C ≡
∫ j∗

0

C · jdj = 1

2
C(j∗)2. (B14)

Thus, the income share of managers is

Π

Y − C
=

(1− α)j∗

2− (1− α)j∗
. (B15)

The marginal effect of of an improvement of automation technology on the labor share

of income is:
dΠ/(Y − C)

dγ
=

2(1− α)

[2− (1− α)j∗]2
· dj

∗

dγ
> 0 (B16)

When Proposition A.1 holds, Lemma B.1 assures the inequality above.

On the other hand, the income share of labor is given by (B5 ):

w

Y − C
=

2(1− j∗)

2− (1− α)j∗
(B17)

Thus, since the marginal effect is

dw/(Y − C)
dγ

= − 2(1 + α)

[2− (1− α)j∗]2
dj∗

dγ
< 0, (B18)

The wage decreases as automation technology improves. As for total income share:

d

dγ

(
Π

Y − C
+

w

Y − C

)
=

−4α

[2− (1− α)j∗]2
dj∗

dγ
< 0. (B19)

Thus, the total labor income share decreases with γ. The effect of a change in C on

labor income share can be proved in the same manner.

B.3. The Proof of Proposition 6

In the steady state, (40) is:

H ≡ β

1 + β
j(1− j)Y − K

α(1 + β)

[
1− α− Cj

2Y

]
−K = 0. (B20)
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By totally differentiating the above equation, the effect of an increase in γ on K is:

dK

dγ
= −∂H

∂Y

(
∂H

∂K

)−1
dY

dγ
, (B21)

where
∂H

∂Y
=

β

1 + β
j(1− j)− 1

Y

K · Cj
2(1 + β)αY

, (B22)

∂H

∂K
= − 1− α

α(1 + β)
+

Cj

2(1 + β)αY
− 1. (B23)

By using (B20 ), (B23 ) is:

∂H

∂K
= − β

1 + β
j̄(1− j̄)

Y

K
. (B24)

From (39), the effect of an increase in γ on Y is:

dY

dγ
= j

Y

γ
+ αj

Y

K

dK

dγ
. (B25)

By substituting (B21 ) into (B25 ):

dY

dγ
= j

Y

γ

[
1 + αj̄

Y

K

(
∂H

∂K

)−1
∂H

∂Y

]−1

. (B26)

From (B22 ) and (B24 ),(
∂H

∂K

)−1
∂H

∂Y
= −K

Y

[
1− 2αβ(1− j̄)Y 2

CK

]
. (B27)

Substituting (B27 ) into (B26 ):

dY

dγ
= j

Y

γ

[
(1− αj) + αj

CK

2αβ(1− j)Y 2

]−1

> 0. (B28)

Thus, effect of an increase in γ on the wage as the following equation is positive:

dw

dγ
= (1− j)

dY

dγ
> 0. (B29)
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Figure 1 Effects of an improvement of automation productivity in the steady state.
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Figure 2 Effects of a creation of new industries in the steady state.
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Figure 3 The wage when there is a technological limitation j. This figure

illustrates the case of j < j∗.

Figure 4 Aggregate capital when there is a technological limitation j. This

figure illustrates the case of j < j∗.
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Figure 5 Effects of a subsidy policy in the steady state.
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Figure 6 Dynamics of welfare: aggregate welfare of all households, welfare of

households who choose non-automation technology and welfare of households

who face zero fixed costs.

Note: In each panel, the blue line (round), green line (square), and red line (diamond) indicate

the dynamics in cases in which the subsidy rate, σ, is 0.01, 0.04, and 0.06, respectively. The

black (dotted) line in each panel indicates the level of welfare in the previous steady state.
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Figure 7 Dynamics of the interest rate and lifetime income of each type of

household presented in Figure 6.

Note: In each panel, the blue line (round), green line (square), and red line (diamond) indicate

the dynamics in cases in which the subsidy rate, σ, is 0.01, 0.04, and 0.06, respectively. The

black (dotted) line in each panel indicates the level of welfare in the previous steady state.
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Figure A.1 Cases of Proposition A.1.
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Figure A.2 Patterns of convergence when j∗ ≤ 1/2.
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Figure A.3 Shape of Z′′(j∗) in Lemma A.1.
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Figure A.4 Shape of Z(j∗) in Proposition A.4.
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Figure A.5 Case of the unique steady state with monotonic convergence.
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Figure A.6 Case of the unique steady state with cyclical convergence.
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Figure B.1 The patterns of the shape of Wc(j
∗).
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Figure B.2 Thresholds of fixed cost C: Cw1 (red circle) , Cw2 (black diamond),

and C2 (blue square) with respect to α.

Note: When C < Cw1, W
′
c(1/2) < 0. When C < Cw2, there exists an area of j∗ in which

dw/dC < 0. When C < C2, a unique steady state exists.
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