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Abstract 

There are two literature strands that explain stylized facts in emerging economies: the stochastic 

productivity trend or financial frictions. However, financial frictions are driven by both trend and 

stationary productivity shocks, thus distinguishing their impact from the direct role of output 

fluctuations is essential. We estimate sovereign default models, full-nonlinear dynamic stochastic 

general equilibrium (DSGE) with micro-founded financial imperfections, applying a particle filter, 

and evaluate the source of financial frictions. The main finding is that stationary shocks rather than 

trend shocks account for financial frictions and the resulting countercyclicality, except for the 

post-1977 period in Mexico; however, the exception disappears for 1902–2005 as long-run data. The 

sources of financial frictions are determined by the persistence and volatility of shocks, asymmetric 

domestic cost of sovereign default, and mismatch between sovereign default and business cycles. 
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1. Introduction 

The empirical regularities of business cycles in emerging economies are excessive volatility in 

consumption, the countercyclical current account balance, countercyclical interest rates, and frequent 

default at equilibrium (e.g., Neumeyer and Perri, 2005; Uribe and Yue, 2006; Aguiar and Gopinath, 

2006, 2007; García-Cicco et al., 2010; Uribe and Schmitt-Grohé, 2017). There are two literature 

strands that explain these stylized facts. The first claims the most important source of these 

characteristics is a permanent productivity shock. The second emphasizes financial frictions over 

nonstationary productivity shocks. 

For instance, Aguiar and Gopinath (2007) introduce nonstationary productivity shocks into an 

open-economy real business cycle (RBC) model, successfully replicating the characteristics of 

emerging economies. By contrast, García-Cicco et al. (2010) and Chang and Fernández (2013) 

emphasize financial frictions over nonstationary productivity shocks. They add financial frictions 

such as stochastic high debt-elastic interest rate premia to an RBC model with trend shocks, and 

report that the role of a stochastic trend is drastically decreased. Specifically, the persistence and 

volatility of trend shocks are assigned small values. Additionally, a financial frictions model 

performs better than frictionless RBC models with stochastic trends, as a frictionless RBC model 

tends to generate nearly random-walk trade balances and fails to replicate excess volatility in 

consumption. 

The above two seminal papers suggest that financial frictions considerably account for the 

volatile Solow residuals1 of frictionless RBC. However, financial frictions are not driven only by a 

stationary transitory productivity shock, but also a trend shock (Aguiar and Gopinath, 2006; Aguiar 

                                                 

1 As other sources of nonstationarity, Boz et al. (2011) suggest informational frictions, and Naoussi 
and Tripier (2013) the level of income, quality of institutions, and size of credit markets. 
Álvarez-Parra et al. (2013) report only a minor effect for trend output shocks in economies with 
durable nondurable and goods. These elements are important, but outside the scope of this paper. 
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et al., 2016). As such, a stochastic trend may play an indirect but important role in causing financial 

frictions. Although Chang and Fernández (2013) have already shown trend shocks do not have a 

significant effect on the bond spread in linearized equations, empirical studies reveal the responses of 

credit risks to economic shocks have nonlinear properties: moderate debtors suffer little impacts 

from shocks, whereas countries close to borderline solvency would face a steeper increase in a bond 

spread (Daliami et al., 2008; Jeanneret and Souissi, 2016; Galstyan and Velic, 2017), suggesting a 

stochastic trend may affect financial frictions in a nonlinear economy. 

Sovereign default models are suitable for addressing this issue, since their credit risks are caused 

nonlinearly through asset incompleteness. Indeed, García-Cicco et al. (2010) and Chang and 

Fernández (2013) point out that a promising area for future research is estimating and evaluating a 

dynamic stochastic general equilibrium (DSGE) model of an emerging economy with micro-founded 

financial imperfections. The literature on sovereign default models has repeatedly succeeded in 

replicating the stylized facts of business cycles in emerging economies2 but, to the best of our 

knowledge, there is no estimation attempt focusing on a random-walk stochastic trend.3 Therefore, 

we estimate a structural sovereign default model by applying a Bayesian state space framework, and 

test which trend shocks or transitory shocks largely drive the countercyclical current account, 

countercyclical interest rates, and frequent default in emerging markets. 

Our main result indicates that stationary shocks rather than trend shocks principally account for 

financial frictions, which is consistent with the findings of García-Cicco et al. (2010) and Chang and 

Fernández (2013). Additionally, the only exception is Mexico during 1977–2013, which is in line 
                                                 

2 See, for example, Arellano (2008), Cuadra and Sapriza (2008), Alfaro and Kanczuk (2009), 
Hatchondo and Martinez (2009), Yue (2010), Boz (2011), Mendoza and Yue (2012), and Durdu et 
al. (2013). 

3 To the best of our knowledge, except for this paper, only Gumus et al. (2017) estimate the Arellano 
(2008) model applying a maximum simulated likelihood estimation. However, our work is focusing 
on the effect of a stochastic trend, whereas they compare the performance of predicting the timing 
of default events of Arellano (2008) with that of a logit-model using filtered series. Moreover, our 
estimation assumes random-walk productivity shocks using a Bayesian nonlinear state-space 
model, which we describe in detail in Section 4. 
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with Aguiar and Gopinath’s (2007) results. However, long-run data for 1902–2005 shows the role of 

trend shocks on financial frictions is drastically reduced, which is consistent with García-Cicco et 

al.’s (2010) findings: an empirical analysis of the post-1980 period may be problematic, since 

1980–2005 contains only between one and a half and two cycles. On the other hand, due to high 

persistence, trend shocks play an important role in volatile trends (as per Aguiar and Gopinath 

(2007)), although their impact on financial frictions is limited. 

The seemingly contradictory results stem from four elements. First, stationary shocks are even 

more persistent than trend shocks, which implies that stationary shocks drive financial frictions more 

than trend shocks. The intuition behind this is derived in Section 4. A highly persistent positive shock 

implies income is higher today but even higher in the next period, thus strengthening the ability to 

access international financial markets to bring forward expected income and leading to significant 

debt accumulation with low interest rates. The more persistent a shock becomes, the more intense the 

effect is. 

Second, as the volatility of shocks increases, an expected value of utility conditional on the 

positive realization of output increases, leading to higher debt accumulation and lower credit 

spreads4. For Mexico, during 1977–2013, the volatility of trend shocks is larger than that of 

stationary shocks, thereby the exception. For the other cases, including Mexico during 1902–2005, 

the aforementioned persistence effect overwhelms the volatility effect, and/or the latter effect takes 

sides with stationary shocks. 

Third, the asymmetric domestic cost of default amplifies the second factor, but not the first 

effect. The asymmetric domestic cost is a penalty imposed on debtor output only when an income 

shock achieves more than its unconditional mean, but is not sanctioned when a shock is below its 

                                                 

4 The volatility effects reverses if volatility is too high, as per Uribe and Schmitt-Grohé (2017). As a 
result, agents are exposed to large negative shocks, leading to higher default frequency and more 
bond spreads. Increased uncertainty induces an increase in precautionary savings and, consequently, 
a decrease in the desired external debt level. 
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unconditional mean. Generally, the more costs are imposed on defaulters, the more a sovereign 

hesitates to renege a debt contract, resulting in lower credit risks and more debt capacity. 

Asymmetric cost intensifies the volatility effect, since larger volatility indicates more chances to 

exceed the unconditional mean, leading to a more substantial domestic cost preventing a sovereign 

from defaulting. Meanwhile, as higher persistence means fewer recovery opportunities from 

downturns, asymmetric cost does not amplify the persistence effect. In the estimation, the 

asymmetric domestic cost in Mexico is severe compared to that of Argentina, thereby the cost 

promotes 1977–2013 Mexico as the exception for the source of financial frictions. Providing 

parameter estimates of sovereign default models by Bayesian structural estimation is another 

contribution of this paper. The calibrations differ among studies, although almost all papers 

investigating the Argentinian economy,5 reflecting a low agreement on the magnitude of default 

costs in the empirical studies.6  

Fourth, although the formulations of trend and stationary shocks are similar, identification arises 

from sovereign default cycles not always coinciding with business cycles, which indicates the drivers 

of the countercyclicality should sometimes remain above their unconditional mean for a long time, 

even during recessions. In fact, Reinhart and Rogoff (2014) report that Argentina, during 1894–1950, 

did not experience sovereign default, but at least two business cycles according to Figure 1 in 

                                                 

5 The calibrations of default costs also differ among studies. For example, the annual probability of 
re-entry ranges from 29.3% (Mendoza and Yue, 2012) to 73.4% (Arellano, 2008), and the 
asymmetric domestic cost from 2.0% (Aguiar and Gopinath, 2007) to 10.0% (Alfaro and Kanczuk, 
2009). 

6 In a broad survey on sovereign defaults, Panizza et al. (2009) find the main costs of sovereign 
defaults are exclusion from international capital markets or trade, interest rate spikes, and large 
output reductions. Regarding exclusion from international trade, Rose (2005) explains that 
sovereign default decreases bilateral trade by around 8% over 15 years. On the other hand, Gelos et 
al. (2011) report the average exclusion as four years (in the 1980s) or 0–2 years (after 1980). 
Martinez and Sandleris (2011) find a 3.2% decrease in trade over five years. As for spikes in 
interest rates, Flandreau and Zumer (2004) find defaults increase spreads by around 90 basis points, 
whereas Borensztein and Panizza (2009) find that the effect is 250–400 basis points. The effects of 
domestic costs (large decline in output) are found to be 0.6% by Chuan and Sturzenegger (2005) 
and 0.6–2.5% by Borensztein and Panizza (2009). 



6 

García-Cicco et al. (2010). By definition, trend shocks are responsible for not only output 

fluctuations but also growth level, seeming rather related to business cycles. Thereby, stationary 

shocks rather tend to take charge of sovereign default cycles. 

Overall, through the resulting financial frictions, stationary shocks dominate the 

countercyclicality in business cycles, although trend shocks account for volatile outputs and the 

exception of Mexico post-1977 arises. In other words, this paper bridges the gap between the two 

literatures strands. 

The basic estimation strategy in this paper is almost identical to that of Gust et al. (2017), which 

conduct a Bayesian estimation on full-nonlinear DSGE models. To evaluate likelihoods, we must use 

a particle filter instead of Kalman filter, because sovereign default models are full-nonlinear.7 For 

the same reason, Gust et al. (2017) use a particle filter for the New-Keynesian model with zero lower 

bound. The main obstacle is that both the full-nonlinear solution and particle filter require significant 

computation times. 

For reducing the computational burden, we use coarse grids compared with preceding studies, 

such as Aguiar and Gopinath (2006), but interpolate value functions. For instance, Hatchondo et al. 

(2010) report that a discrete state space technique (DSS) with interpolation with coarse grids solves 

the model faster and more accurate than a DSS with fine grids but without interpolation. The method 

of approximating stationary AR (1) processes is Rouwenhorst’s (1995), since it is the best 

approximation method for highly persistent AR (1) processes according to Kopecky and Suen 

(2010). Moreover, the persistence of transitory productivity shocks is often above 0.9 in the case of 

sovereign default models. 

The estimation method is the simulated tempering sequential Monte Carlo (SMC) algorithm 

proposed by Herbst and Schorfheide (2014, 2015), instead of the random-walk Metropolis–Hastings 
                                                 

7 Almost all sovereign default models are full-nonlinear DSGE, for example, Arellano (2008), 
Cuadra and Sapriza (2008), Alfaro and Kanczuk (2009), Hatchondo and Martinez (2009), Yue 
(2010), Boz (2011), Mendoza and Yue (2012), and Durdu et al. (2013). 
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algorithm (RWMH). The utilized algorithm has some advantages over RWMH, such as propagating 

the particles of parameter vectors to the entire prior space. Whereas RWMH has one or several 

chains with single initial values, simulated tempering SMC avoids parameter draws with severe 

autocorrelation or caught in a local mode. The advantage is important, since there is less agreement 

on the parameter values of sovereign default models. There are some applications of simulated 

tempering SMC to DSGE models, such as the studies of Herbst and Schorfheide (2014, 2015), Gust 

et al. (2017), and Hirose et al. (2017), but to the best of our knowledge, this study is the first 

application of a simulated tempering SMC to a full nonlinear regime-switching DSGE model. 

The remainder of this paper is organized as follows. In Section 2, we propose the sovereign 

default model. Section 3 presents an estimation strategy tailored to sovereign default models, Section 

4 the estimation results, and Section 5 the sensitivity analysis. Section 6 concludes the paper. 

2. Model 

2.1. Model economy 

We consider a sovereign default model with both stationary and nonstationary shocks, similar to 

those utilized by Aguiar and Gopinath (2006) and Arellano (2008). Unlike these two studies, we 

simultaneously analyze the effects of both transitory and permanent shocks as describes later. 

Another improvement is the model considering both proportional and asymmetric domestic costs.  

We assume that there is a single tradable good. The economy receives a stochastic endowment 

stream, which has the similar formulation as the total factor productivity in Aguiar and Gopinath 

(2006, 2007), García-Cicco et al. (2010) and Chang and Fernández (2013): 

 

Γ ,	 1  

 

where Γ  denotes the trend and  is a transitory shock. In equation (1), the endowment stream is 
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comprised of stationary and nonstationary productivity shocks. The transitory productivity shock, 

, follows an AR (1): 

 

.	 		 2  

 

Where ~ 0, . The stochastic trend is formulated as: 

 

Γ Γ , 		 3  

ln 1 ln ln . 4  

 

where c  and ~ 0, . The state vector is unbounded, because the endowment 

stream has a trend. Detrending is discussed in subsection 2.3. Households are identical, and 

maximize utility according to: 

 

, 	 5  

 

where 0 1 is the discount factor,  consumption, and ∙  an increasing and strictly 

concave utility function. The utility function is assumed to display a constant coefficient of relative 

risk aversion, γ, as follows: 

 

1
. 	 6  

 

A benevolent government maximizes the present expected discounted value of the future utility 
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flows of households in equation (6). The government utilizes international borrowing to smooth 

consumption and alter its time path. It also buys one-period discount bonds  at price 

, , , which is endogenously determined, depending on the government’s incentive to 

default, and total amounts of sovereign debt and endowment. Positive values for  indicate the 

government purchases bonds, and negative values issuing bonds in international financial markets. 

Earnings on the government portfolio are distributed as lump sums to households. The resource 

constraint in the economy when the government chooses to repay debts is: 

 

, , . 	 7  

 

The government is excluded from the international financial markets when it chooses to default. The 

resource constraint in the default state is: 

 

, 8  

 

where  is the endowment when in default state. 

Foreign investors are assumed to evaluate defaultable bonds in a risk-neutral manner. During 

every period, risk-neutral investors lend  to maximize expected profits, , as follows: 

 

, ,
1 , ,

1
, 9  

 

where , ,  is the default probability, depending on debt accumulation and an aggregate 

shock. 
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2.2. Recursive formulation 

Let , ,  denote the government’s value function before the default or repayment 

decisions. We define , ,  as the value associated with not defaulting, and ,  as 

the one associated with defaulting. , ,  satisfies 

 

, ,
,

, , , , . 10  

 

The decision is given by 

 

, , 	1			 	 , , ,
0											

. 11  

 

An economy becomes an autarky when the government chooses default, and the value function is 

given by: 

 

, 0, , 1 , , 12  

 

where  is the probability the economy regains access to international financial markets. When the 

government decides to repay debts, the value function is given by: 

 

, , , , . 13  

 

Therefore, default probabilities , ,  are given by: 

 

, , . 14  
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The bond price that satisfies the lender’s zero-profit condition is: 

 

, ,
1 1

1
. 	 15  

 

2.3. Detrending and domestic cost 

The state vector is unbounded, because the endowment stream has a trend. We normalize the 

nonstationary element following Aguiar and Gopinath (2006), dividing a variable  by , and 

denote /  by , whereas Aguiar et al. (2016) normalize their variables by the current level 

of technology , as in the DSGE studies of Smets and Wouters (2007), and Chang and Fernández 

(2013). Importantly, the method of Aguiar and Gopinath (2006) enables us to analyze the effect of 

trend shocks on business cycles. The logged and detrended endowment streams of equation (1) are 

expressed as: 

 

,  

. 16  

 

Hence, the detrended endowment stream is composed of both stationary and nonstationary 

productivity shocks. By contrast, the trend shock term is deleted if normalizing variables by the 

current level of technology, . The budget constraints are: 

 

, , . 	 17  

 

Then, the default decision is featured by: 
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, , 	1			 	 , , ,
0											

. 18  

 

Further, the detrended value functions are given by: 

 

, ,
,

, , , , , 19  

, 0, , 1 , , 	 20  

, , , , . 	 21  

 

The bond price that satisfies the lender’s zero-profit condition is: 

 

, ,
1 1

1
. 	 22  

 

Domestic cost can be defined after normalization, since the asymmetric domestic cost requires 

the unconditional mean of the income process, which is a random-walk before normalization. The 

model includes two types of proportional and asymmetric domestic costs. Aguiar and Gopinath 

(2006), Alfaro and Kanczuk (2009), Hatchondo and Martinez (2009), and Yue (2010) use only a 

proportional cost, whereas Arellano (2008), Cuadra and Sapriza (2008), and Cuadra et al. (2010) 

adopt only an asymmetric cost. However, the effects of both costs on business cycles differ. 

Proportional costs are immediately and always imposed to debtors during default, while asymmetric 

costs are only incurred when output fluctuates above the unconditional mean level. This means 

proportional cost always reduces the default incentive. However, asymmetric cost does not inhibit 

default enticement when the output is sufficiently lower than the unconditional mean. In the model, 
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two types of domestic costs are combined. 

 

1 							 	 1 1 		

1 								 	 1 1 	
, 23  

 

where  denotes the unconditional mean of . 

2.4. Equilibrium definition 

The equilibrium is characterized by 

a. a triplet of value functions , , , , , , , ; 

b. rules for default , ,  and borrowing (saving) , , ; 

c. and a bond price function , , ; 

such that 

i. given a bond price function , , , policy functions , ,  and , ,  

solve Bellman equations , , , , , , , ; 

ii. given policy rules , ,  and , , , bond price , ,  satisfies 

equation (22). 

3. Solution and econometric inference 

3.1. Model solution 

The model is numerically solved by value function iteration with linear interpolation. The 

solution features adopting linear interpolation for approximating value functions and using 

Rouwenhorst’s (1995) method for the approximating AR (1) process. The details of the algorithm are 

provided in the Appendix. 

Hatchondo et al. (2010) show interpolation methods enable us to solve sovereign default models 
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faster and more accurately than the DSS with fine grids, but without interpolations. DSS discretizes 

the AR (1) process for productivity shocks, and confines the government to selecting the optimal 

level of debt from a discrete set of points. By contrast, interpolation methods allow the sovereign to 

choose the optimal borrowing level from a continuous set, and the resulting bond price schedule and 

implied spread behavior are rather accurate.  

As for approximation methods of the AR (1) process, Kopecky and Suen (2010) show that 

Rouwenhorst’s (1995) method performs better than other methods, such as Tauchen’s (1986), 

quadrature-based method, and Adda-Cooper method, especially when the persistence of shocks is 

above 0.9.  

3.2. Data 

The target economies are Argentina and Mexico, following the studies of Aguiar and Gopinath 

(2006, 2007), García-Cicco et al. (2010), Chang and Fernández (2013), and several other studies on 

structural sovereign default models. The observables are real GDP per capita, external debt stocks, 

interest rates, and default states. External debt stocks are deflated by dollar expected inflation rates 

and divided by total population. In the main analysis, we use the deposit rates provided by the World 

Bank in World Development Indicators as country-specific interest rates, since they have longer data 

than J. P. Morgan’s EMBI + spread. We calculate estimation results using EMBI + spread as 

robustness check. Interest rates are also deflated by dollar expected inflation rates. The default states 

are defined by Standard and Poor’s, and we add the default events in Argentina in 1951 and 

1956–1965, following Reinhart and Rogoff (2014). Data frequency is annual, due to external debt 

stocks being provided only with annual data. 

The analyzed period is 1978–2013 (Argentina), 1977–2013 (Mexico), and 1902–2005 

(Argentina and Mexico). The former period corresponds to Aguiar and Gopinath (2007) and Chang 

and Fernández (2013), and the latter follows García-Cicco et al. (2010), who point out that 
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1980–2005 only contains between one and a half and two cycles, thus possibly causing trend shocks 

to be more important than in reality. For 1902–2005, we use the data provided by García-Cicco et al. 

(2010). 

3.3. State space representation 

The basic framework of the estimation strategy is almost identical to that of Gust et al. (2017), 

who estimate a full-nonlinear New-Keynesian model with zero lower bound. The state transition 

equation, , is the function Φ, depending on its past realization  and current innovations to 

shocks , given a set of parameters ϑ: 

 

 Φ , ; , ~ ∙	; ,  	 24  

 

where 

 

 , , , , , , , , ,  

 , , and  

 ϑ , , , , , , , , , , .  

 

After solving for the state transition equation, we map the variables in the model to the observables. 

The compact form of the measurement equation is: 

 

 Ψ , ; ,  ~ ∙	; .  	 25  

 

Bayesian inference amounts to the characterizing properties of the posterior distribution 

| :  proportional to the product of prior density  and the likelihood function : | . 
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That is, 

 

| : ∝ : | .  

 

Since it is not possible to evaluate these integrals analytically using a Kalman filter, we use a 

bootstrap particle filter. This latter filter is a special case of sequential importance sampling with 

resampling, and the details of the algorithm are available in the Appendix. 

The measurement equations include a one-period lag of the technology growth rate, while those 

of Smets and Wouters (2007) and Chang and Fernández (2013) append current technological growth 

rate. The reason for this is that we detrend the variables by Γ , whereas they detrend the model 

using the present level of technology corresponding to Γ  in this paper. The variables with trend  

are decomposed as follows: 

 

  

 . 		 26  

 

We assume bond prices and default decisions have no trend, as assumed in other DSGE model 

studies. The measurement equations for 1977–2013 Mexico and 1978–2013 Argentina are: 

 

ln ln
ln ln

0
0

,

,

,

,

. 	 27  

 

The measurement equation for 1902–2005 (Argentina and Mexico) are: 
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/
ln ln

/ 0
0

,

/ ,

,

. 	 28  

 

Since data on external debt and interest rates are unavailable for 1902–2005, we use the trade 

balance to output ratio and omit bond prices from the measurement equation. 

Our measurement equations also include measurement errors. One reason for including them is 

to circumvent stochastic singularity, which arises when there are more observables than shocks in the 

model. The shocks in the model are two productivity shocks, but we consider three observables. 

García-Cicco et al. (2010), Schmitt-Grohé and Uribe (2012), and Chang and Fernández (2013) also 

adopt measurement errors for the same reason. The measurement errors are restricted to a maximum 

of 20% of the empirical standard deviation to avoid them absorbing variability, as discussed by An 

and Schorfheide (2007) and García-Cicco et al. (2010). The other reasons are to avoid degeneracy 

and absorb model misspecification, as Herbst and Schorfheide (2015) and Gust et al. (2017) 

describe. 

We add a default decision to the measurement equations, since the definition of sovereign 

default is clear, and the agents in the economy can easily observe the credit state of the sovereign. 

Similarly, some studies applying a state space model add default decisions or obvious crises to their 

measurement equations, such as Schwaab et al. (2016) and Rose and Spiegel (2010, 2011, 2012). 

3.4. Simulated tempering SMC–SMC algorithm 

Apart from evaluating likelihood, we also employ a particle filter algorithm to elicit draws from 

the posterior. The algorithm is the simulated tempering SMC, proposed by Herbst and Schorfheide 

(2014, 2015), and is an estimation strategy that uses particle filter (SMC) to find a good proposal 

density, hence being labeled SMC–SMC. To the best of our knowledge, this paper is the first to apply 

such an estimation method to a full nonlinear regime-switching DSGE model.  
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The most important advantage of the SMC algorithm is it explores entire prior ranges, 

propagating particles of parameter vectors to thousands of multiple chains. It further prevents 

parameter draws from being caught in a local mode. The use of multiple chains has other desirable 

advantages, particularly when coping with complex posterior distributions involving long tails and 

multi-modality (Gilks et al., 1994; Liu et al., 2000; Ter Braak, 2006, Ter Braak and Vrugt, 2008; 

Radu et al., 2009; Vrugt et al., 2009). 

All priors are uniform in securing objectiveness, such as in Fernández-Villaverde and 

Rubio-Ramírez (2005) and García-Cicco et al. (2010) (Table 1). The ranges cover the calibration 

values of the numerous studies on structural sovereign default models.8 

The scale parameter is adjusted by approximately 25–40%, along with the tempering schedule. 

The number of particles for likelihood evaluation is 20,000 to obtain robust results efficiently, 

according to Amisano and Tristani (2010) and Malik and Pitt (2011). The total number of MH-steps 

is 600,000, which is sufficiently large.9 

4. Results 

4.1. Parameter estimates 

Tables 2 and 3 present the means and intervals bracketed by 5% and 95% of the posterior 

distributions based on the estimations for post-1970s and 1902–2005, respectively. First, the 

persistence of stationary shocks is larger than that of trend shocks in all cases. Second, the volatility 

of trend shocks is larger than that of stationary shocks in Mexico. Finally, the asymmetric domestic 

                                                 

8 See, for example, Arellano (2008), Cuadra and Sapriza (2008), Alfaro and Kanczuk (2009), 
Hatchondo and Martinez (2009), Yue (2010), Boz (2011), Mendoza and Yue (2012), and Durdu et 
al. (2013). 

9 García-Cicco et al. (2010) use two million iterations in their MCMC estimation, but their model 
has substantially more parameters than this paper. Log-linearized DSGE model estimation studies 
that use a basic Kalman filter for likelihood evaluation often conduct 500,000 MCMC iterations. 
DSGE studies that use a particle filter have fewer iterations than the Kalman filter case. 
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cost of Mexico is higher than that of Argentina. The economics implications of these results are 

described in subsection 4.2. 

Another feature of the estimates is the probability of re-entry, as the proportional and 

asymmetric domestic cost are relatively low among preceding studies.10 The reason for the low 

probability of regaining access to capital markets is that both default frequency and period are 

measured as to be matched to the observations in the Bayesian estimation, whereas previous studies 

matched the moments of the frequency. As the resulting low probability of re-entry inhibits default, 

the domestic cost decreases to compensate for default frequency. The low domestic cost is consistent 

with empirical studies, such as Chuan and Sturzenegger’s (2005), and with the 0.6–2.5% values by 

Borensztein and Panizza (2009). 

The estimation intervals in this paper are narrow compared to other DSGE studies, such as 

Smets and Wouters (2007), García-Cicco et al. (2010), and Chang and Fernández (2013). The main 

reason for the tighter intervals is the measurement equations include default state. The candidates of 

the parameter vectors, which do not predict default, are assigned low likelihood. The power of 

predicting the default state is thus sensitive to the values of deep parameters, causing the intervals 

become to be tighter. However, the models do a poor job in forecasting default state if excluding 

default state from the measurement equations, and some parameter estimates range over almost 

entire space of priors. 

4.2. Trend shocks versus stationary productivity shocks 

The persistence of trend shocks is larger than in preceding studies, leading to a higher 

random-walk component (RWC) (Table 4). RWC is a criterion for determining the importance of 

                                                 

10 The calibrations of default costs also differ among studies. For example, the annual probability of 
re-entry ranges from 29.3% (Mendoza and Yue, 2012) to 73.4% (Arellano, 2008), and the 
asymmetric domestic cost is from 2.0% (Aguiar and Gopinath, 2007) to 10.0% (Alfaro and 
Kanczuk, 2009). 
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trend shocks, proposed by Aguiar and Gopinath (2007), which is the relative variance of the 

permanent component of productivity growth to total productivity growth. The equation for RWC is: 

 

/ 1

2/ 1 / 1
. 	 29  

 

A high RWC suggests trend shocks play an important and direct role on output fluctuations. 

Accordingly, the components of trend shocks in the nonlinear shock propagation are sizeable (Figs. 1 

and 2), which is consistent with Aguiar and Gopinath (2007). 

However, the financial frictions and the resulting countercyclicality in business cycles are mainly 

caused by stationary shocks, except for 1977–2013 Mexico. The bond price schedules show 

stationary shocks achieve higher bond prices (lower interest rates) (Figs. 5A, 9A, and 10A), thereby 

the sovereign borrowing in response to stationary rather than trend shocks, as shown by the policy 

functions (Figs. 6A, 9B, and 10B). Consequently, the drivers of sovereign default are stationary 

shocks (Figs. 1A, 2A, and 2B), and which vary with peacetime and default cycles (Figs. 3A, 4A, and 

4B). During the realization of a shock is negative regardless of the type of the shock, the bond price 

immediately decreases (Figs. 5B and 7B), and a sovereign thus hesitates to issue bonds (Figs. 6B and 

8B). 

The mechanism behind why stationary shocks generate more financial frictions than trend shocks 

is relative persistence, that is,  is higher than  (Tables 2, 3, and 6). A highly persistent positive 

shock implies that income is higher today, but even higher over the subsequent period, thus 

strengthening the ability to access international financial markets to bring forward expected income 

and leading to the greater indebtedness, given the low funding rate. The more persistent a shock 

becomes, the more intense the effect is, as shown in Fig. 11. 

However, only during 1977–2013, trend shocks in Mexico appear to account for financial 
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frictions more than transitory shocks, although the persistence of stationary shocks is higher than that 

of trend shocks (Figs. 8, 9, and Table 2). Those making an exception are the volatility effect and 

asymmetric cost of default. As shock volatility increases, the expected value of utility conditional on 

a positive realization of output increases, leading to higher debt accumulation and lower credit 

spreads, as shown in Figs. 12A and B. Indeed, utility conditional on a positive shock increases (Fig. 

12C), because the sovereign has the option to default, which generates the lower bound of utility, 

meaning higher volatility expands the capacity of external debt, in turn overcoming the effect of 

households’ risk aversion. Meanwhile, the utility on a negative shock decreases as volatility 

increases (Fig. 12D), since the sovereign would not borrow from foreign investors on a negative 

shock, implying higher volatility does not mean expanding financial capacity. The volatility of trend 

shocks is higher than that of stationary shocks in Mexico during both 1977–2013 and 1902–2005 

(Tables 2 and 3). The volatility effect overcomes the persistence effect post-1970s Mexico, while the 

latter overwhelms the former during 1902–2005. For Argentina,  is larger than , indicating the 

volatility effect intensifies more the impact of stationary shocks. Note that the volatility effects are 

adverse if volatility is too high, as Uribe and Schmitt-Grohé (2017) document. Agents suffer large 

negative shocks, leading to higher default frequencies and more credit risks. Increased uncertainty 

induces an increase in precautionary savings and, consequently, a fall in the desired level of external 

debt. 

Importantly, asymmetric domestic cost amplifies the volatility effect, increasing the difference 

between the expected value of utility commensurate with the size of the effect, but not intensifying 

the persistence effect. Generally, as asymmetric domestic cost increases, the incentive for a sovereign 

to default declines, leading to lower default probability. The volatility effect responds to the 

increased asymmetric cost, since larger volatility implies more opportunity to exceed the 

unconditional mean, as a more substantial cost for defaulting, thus amplifying the difference between 

the conditional utilities on high volatility and low volatility (Fig. 13B). On the other hand, higher 
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persistence means a lower recovery chance from downturns (Fig. 13A). The asymmetric domestic 

cost of Mexico is large relative to that of Argentina, thereby 1977–2013 Mexico becomes the 

exception for the sources of financial frictions. 

4.3. Identification: Mismatch between sovereign default and business cycles 

The final important factor is that sovereign default cycles do not always match business cycles. 

Reinhart and Rogoff (2014) document that Argentina during 1894–1950 did not experience 

sovereign default, but at least two business cycles according to Figure 1 of García-Cicco et al. 

(2010). The mismatch means sometimes drivers of countercyclicality should remain above their 

unconditional means for a long period, even during recessions, since often a sovereign maintains 

debt repayment during downturns. 

As shown in equations (2), (3) and (4), the formulations of stationary and trend shocks are similar, 

with both shocks having the potential to explain countercyclicality. However, identification between 

these two types of shocks arises from measurement equations (27) and (28). Trend shocks are 

responsible not only for output fluctuations but also growth level, associating them more with 

business cycles. Thereby, stationary shocks rather take charge of sovereign default cycles. As a 

result, stationary shocks remain far above the unconditional mean, even when trend shocks fall 

below it (Figs. 3 and 4).  

4.4. Stylized facts of emerging economies 

In this subsection, we verify the second moments of the models for examining the empirical 

regularities of business cycles in the emerging market, as implied by Aguiar and Gopinath (2006) 

and García-Cicco et al. (2010). Aguiar and Gopinath (2006) show that one of the advantages of 

introducing a trend shock is the simulated path replicates the positive correlation between interest 

rates and current accounts (negative correlation between bond prices and current accounts). 

García-Cicco et al. (2010) point out that one of the problems of a frictionless RBC is that the model 
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tends to generate nearly random-walk trade balances. 

The moments are summarized in Table 5, demonstrating that the proposed models replicate 

excessive volatility in consumption, the countercyclical current account, and countercyclical interest 

rates (pro-cyclical bond prices). Additionally, the correlation between bond prices and the current 

account is negative, and the autocorrelations of trade balance–output ratios do not exhibit 

random-walk behaviors. The exception is the positive correlation between bond prices and current 

accounts in 1978–2013 Argentina. This is because, during 1978–1981, bond prices decreased 

sharply, while the external debt position also escalated drastically. The other periods, 1994–2000 and 

2005–2013, exhibit negative correlation. Moreover, the correlation is negative in 1902–2013 

Argentina, implying that the analysis of long-run data is important, as García-Cicco et al. (2010) 

document. 

5. Robustness 

5.1. Other interest rate data: EMBI + spread and U.S. interest rate 

One robustness check is the estimation using the EMBI + spread and the U.S. interest rate. In 

main analysis, we use the deposit rate as the country-specific interest rate since longer period data 

are available, while many studies on emerging economies create interest rate series with EMBI + 

spread and the U.S. interest rate. For Mexico, the EMBI + spread during default period 1982–1990 is 

not available, thus we estimate only the Argentine economy. We construct the country-specific 

interest rate as the sum of the EMBI + spread for Argentina and the 90-day treasury-bill rate deflated 

by expected dollar inflation.  

The results show that parameter estimates are similar to the main analysis (Table 6), and the 

bond price schedule and the policy function imply stationary shocks account for financial frictions 

more than trend shocks (Fig. 14). 
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5.2. Another detrending method: HP-filter 

Another robustness check is the estimation on HP-filtered series. Numerous studies on sovereign 

default models employ an HP filter, such as Aguiar and Gopinath (2006) and Mendoza and Yue 

(2012), whereas we use log-differenced series assuming balanced growth. This analysis examines 

whether detrending method affects parameter estimates severely. 

The measurement equations are different from the main analysis, since a trend is calculated 

using an HP-filter rather than being derived in the model. The equations are constructed similarly to 

those of some studies on DSGE model estimations with particle filtering using HP-filtered series, 

such as Fernández-Villaverde and Rubio-Ramírez (2005, 2007) and Malik and Pitt (2011). The 

measurement equations of the HP-filter approach are as follows (the tilde denotes deviations from 

trend): 

 

,

,

,

,
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The results are shown in Table 7. The probability of re-entry and domestic costs are relatively 

small comparing to preceding studies. Thus, we confirm that the tendency of parameter estimates is 

similar to the main result (Table 7). The comparison between trend and stationary shocks in bond 

price schedules and policy functions is not available, since there is no stochastic trend term in the 

HP-filter based estimation. 

6. Conclusions 

The major characteristics of the business cycles of emerging economies are excessive volatility 

in consumption, the countercyclical current account balance, countercyclical interest rates, and 
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frequent default at equilibrium. There are two literature strands that explain these stylized facts. The 

first claims that the most important sources for these characteristics are permanent productivity 

shocks. The second emphasizes financial frictions over nonstationary productivity shocks. However, 

a stochastic trend is a driver of not only business cycles, but also financial frictions. Determining 

whether trend or stationary shocks are the main source of financial frictions and the resulting 

countercyclicality of business cycles is thus essential. 

We estimate sovereign default models, and investigate the properties of models and data. The 

main finding is that stationary shocks rather than trend shocks account for financial frictions and the 

resulting countercyclicality, except for post-1977 Mexico. The main determinants of these results are 

the persistence and volatility of shocks, asymmetric domestic cost of sovereign default, and 

mismatch between sovereign default and business cycles. 

The results bridge the gap between the two literature strands above. First, in line with 

García-Cicco et al. (2010) and Chang and Fernández (2013), this paper reveals stationary shocks are 

the more important source of financial frictions and the resulting countercyclicality of business 

cycles over trend shocks. This arises from the high persistence of stationary shocks. Second, on the 

other hand, consistent with Aguiar and Gopinath (2007), volatility of trend shocks that is high 

compared to stationary shocks plays an important role in financial frictions in post-1977 Mexico, as 

the only exception. Third, the former effect overwhelms the latter for one-century data on Mexico, in 

accordance with the observations of García-Cicco et al. (2010). Additionally, the relatively large 

asymmetric domestic cost of default for Mexico induces the exception to occur, amplifying the 

volatility effect. All these findings are based on the differences of estimated parameters, which stem 

from the mismatch between sovereign default and business cycles. 

A natural extension of this paper would be to add other important shocks in emerging 

economies, such as interest rate or terms of trade shocks. Uribe and Yue (2006) show that one of the 

major drivers of interest rate fluctuations in emerging economies is the monetary policy of the 
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United States. Schmitt-Grohé and Uribe (2016) and Na et al. (2014) introduce downward nominal 

wage rigidity into their models, and replicate defaults with large currency devaluations. The 

estimation framework is applicable to these important issues as well. 
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Appendix 

1. Solution 

1.1. Value function iteration 

To find the equilibrium allocations, we implement the value function iteration. Based on the 

implications of Hatchondo et al. (2010) for time efficiency, we adopt the one-loop algorithm that 

iterates simultaneously the value and bond price function: 

 

a. Discretize the state space evenly in , but approximate	  and  following Rouwenhorst’s 

(1995) method. 

b. Assume the initial value of a triplet of value function 

, , , , , , ,  and bond price function	 , , . 

c. Solve the sovereign’s problem and obtain policy functions , , , , ,  and 

value functions , , , , , , , . 

d. Given these policy functions, calculate a default probability , ,  and the resulting 

bond price functions , , . 

e. Check for convergence whether max| | 1 . If it converges, stop. If not, go to 

step c. 

 

The above process linearly interpolates , , , , , , , , 

, , , and , , . Although Hatchondo et al. (2010) report the performances of 

Chebyshev collocations and cubic splines, Yamazaki (forthcoming) shows insignificant differences 

in the accuracies among linear, quadratic, and cubic splines. Similarly, Richter et al. (2014) also 

report that linear interpolation provides more accurate solutions to the full-nonlinear New-Keynesian 
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model than Chebyshev collocations. Judd and Solnick (1994) indicate cubic spline is superior to 

linear interpolations in terms of accuracy, but from the perspective of the convergence, linear 

interpolation performs better. The reason why linear interpolation sometimes performs better than 

high-order approximations is its shape-preserving property to avoid internodal oscillations among 

grid points (Judd and Solnick, 1994; Wang and Judd, 2000; Stachurski, 2008; Cai and Judd, 2014). 

Regarding the approximation methods for the AR (1) process, Kopecky and Suen (2010) show 

that the Rouwenhorst method performs better than Tauchen’s (1986), quadrature-based method, and 

Adda-Cooper method. Yamazaki (forthcoming) reports that the implications of Hatchondo et al. 

(2010) do not change if choosing between Tauchen (1986) and Rouwenhorst (1995), although he 

does not refer to their relative performance. 

2. Estimation 

2.1. Particle filter 

Sovereign default models are full-nonlinear, meaning a particle filter is needed to evaluate 

likelihood, given a set of parameters. The implemented algorithm is identical to the bootstrap particle 

filter of Herbst and Schorfheide (2015) and Gust et al. (2017), except that Gust et al. (2017) use the 

adapted proposal distribution at a particular time-point to mitigate the degeneracy problem. The 

adaptation is attractive for statistical accuracy, but we choose to use the straight-forward particle 

filter to preserve the framework of the sovereign default model. We set 20,000 to obtain 

robust results efficiently according to Amisano and Tristani (2010) and Malik and Pitt (2011). 

Algorithm 1 (Bootstrap particle filter) 

1. Initialization  
 Draw the initial particles from ~ |  and set 1. 

 
2. Recursion  

For	t 1,⋯ , T 
 (a) Forecasting	   
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  Propagate particles ,  by simulating the state-transition equation: 

̃ Φ , ; , ~ ∙; . 
 

 (b) Forecasting   
  Calculate the incremental weights: 

| ̃ , . 
Approximate predictive density | : ,  as follows: 

| : , ∑ . 

 (c) Updating  
  Calculate the normalized weights 

∑
. 

 (d) Selection  
  If 1, where 0.5 , where / ∑ , 

   Resample the particles by multinomial resampling, ̃ , . Let 

1. 
  If 0, 
   Let ̃  and .  

 
3. Likelihood approximation 
 The approximation of the likelihood function is given by: 

̂ : | ∏ ∑ . 

 

2.2. Simulated tempering SMC 

The algorithm in this paper follows the simulated tempering SMC proposed by Herbst and 

Schorfheide (2014, 2015). SMC algorithms were initially developed to numerically evaluate the 

likelihood of nonlinear state space models as discussed in subsection 2.1 of this Appendix. 

Additionally, SMC algorithms can be adapted to conducting posterior inference in DSGE models. 

The simulated tempering SMC consists of three steps: correction, selection, and mutation. 

The hyperparameters of this study are the number of particles for parameter vectors N 2000, 

number of stages	 300, parameter for the tempering schedule	 2.1, number of blocks 

6, number of MH steps at each stage	 1, parameter controls for the weight of the 

proposals’ mixture components	 0.9, and number of particles for the likelihood evaluations 
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20,000 . The tempering schedule  is determined by . As the 

number of stages increases, each stage requires additional likelihood evaluations. The scale 

parameter is adjusted by approximately 25–40%, along with the tempering schedule. The total 

number of likelihood estimations in the SMC algorithm is equal to 600,000, which 

is sufficiently large. 

Algorithm 2 (Simulated tempering SMC) 

1. Initialization  
 Draw , ⋯  from prior π  and set , i 1,⋯ , N. 

 
2. Recursion  

For	n 2,⋯ ,  
 (a) Correction  
  Reweight the particles from stage n 1 by defining the incremental and normalized weights by 

calculating incremental and normalized weights |  and 

∑
. 

 is approximated to , ∑ . 

 
 (b) Selection  
  Compute the effective sample size 

∑
. 

 
  If 1, where 0.5 , 
   Resample the particles by multinomial resampling. Draw 	 	  from a multinomial 

distribution characterized by support points and weights , . Set 1. 

 
  If 0, 
   Let  and .  is approximated to , ∑ . 

 
 (c) Mutation  
  Propagate particles ,  using the Metropolis–Hastings algorithm with transition density 

~ | ;  and stationary .  is approximated to ,

∑ . 

 
3. Final importance of sampling approximation of  
 When n , , ∑ . 
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Table 1: Priors. 

Parameters Distribution Range 
 Discount factor Uniform 0.0, 1.0  
 Risk aversion Uniform 0.0, 10.0  

 Risk-free interest rate Uniform 0.0, 1.0  

 
Persistence of stationary productivity 
shocks 

Uniform 0.0, 1.0  

 SD of stationary productivity shocks Uniform 0.0, 10.0  
 Probability of re-entry Uniform 0.0, 1.0  

 Asymmetric domestic cost Uniform 0.0, 1.0  

 Proportional domestic cost Uniform 0.0, 1.0  

 Gross mean growth Uniform 1.0, 1.3  

 Persistence of nonstationary 
productivity shocks 

Uniform 0.0, 1.0  

 SD of nonstationary productivity 
shocks 

Uniform 0.0, 10.0  

 

  



38 

Table 2: Posteriors post-1970s. 

Argentina Priors Mean 5% 95% 
 Discount factor Uniform 0.886 0.830 0.921 
 Risk aversion Uniform 1.675 1.499 1.900 

 Risk-free interest rate Uniform 3.91% 3.53% 4.11% 

 
Persistence of stationary 
shocks 

Uniform 0.839 0.771 0.885 

 SD of stationary shocks Uniform 0.027 0.024 0.030 
 Probability of re-entry Uniform 21.40% 18.9% 22.9% 

 
Asymmetric domestic 
cost 

Uniform 0.93% 0.85% 1.00% 

 Proportional domestic 
cost 

Uniform 0.046% 0.041% 0.053% 

 Gross mean growth Uniform 1.006 1.000 1.025 

 Persistence of trend 
shocks 

Uniform 0.833 0.743 0.888 

 SD of trend shocks Uniform 0.023 0.021 0.024 
Acceptance ratio 26.20%   
Marginal data density -280.09   
     
Mexico Priors Mean 5% 95% 

 Discount factor Uniform 0.802 0.771 0.835 
 Risk aversion Uniform 3.137 2.881 3.485 

 Risk-free interest rate Uniform 3.46% 2.85% 3.89% 

 
Persistence of stationary 
shocks 

Uniform 0.871 0.838 0.914 

 SD of transitory shocks Uniform 0.018 0.016 0.020 
 Probability of re-entry Uniform 11.59% 10.32% 12.48% 

 
Asymmetric domestic 
cost 

Uniform 3.88% 3.49% 4.36% 

 Proportional domestic 
cost 

Uniform 2.60% 2.42% 2.76% 

 Gross mean growth Uniform 1.002 1.000 1.015 

 Persistence of trend 
shocks 

Uniform 0.701 0.645 0.769 

 SD of trend shocks Uniform 0.022 0.020 0.024 
Acceptance ratio 24.95%   
Marginal data density -302.42   
 
Notes: This table shows the means and intervals bracketed by 5% and 95% of the posterior distributions. 

The intervals are tight, since the measurement equations include default state, assigning less likelihood 
on the particles of parameter vectors that could not predict default events and recoveries. 
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Table 3: Posteriors for 1902–2005. 

Argentina Priors Mean 5% 95% 
 Discount factor Uniform 0.946 0.943 0.948 
 Risk aversion Uniform 2.610 2.601 2.617 

 Risk-free interest rate Uniform 3.88% 3.87% 3.90% 

 
Persistence of stationary 
shocks 

Uniform 0.938 0.935 0.941 

 SD of stationary shocks Uniform 0.0372 0.0370 0.0373 
 Probability of re-entry Uniform 9.35% 9.32% 9.38% 

 
Asymmetric domestic 
cost 

Uniform 1.946% 1.939% 1.952% 

 Proportional domestic 
cost 

Uniform 0.499% 0.497% 0.500% 

 Gross mean growth Uniform 1.003 1.000 1.006 

 Persistence of trend 
shocks 

Uniform 0.890 0.887 0.893 

 SD of trend shocks Uniform 0.02835 0.02826 0.02844 
Acceptance ratio 16.50%   
Marginal data density -152.06   
    
Mexico Priors Mean 5% 95% 

 Discount factor Uniform 0.748 0.741 0.755 
 Risk aversion Uniform 3.285 3.253 3.307 

 Risk-free interest rate Uniform 3.94% 3.90% 3.97% 

 
Persistence of stationary 
shocks 

Uniform 0.890 0.882 0.897 

 SD of stationary shocks Uniform 0.0235 0.0232 0.0237 
 Probability of re-entry Uniform 10.71% 10.61% 10.79% 

 
Asymmetric domestic 
cost 

Uniform 5.40% 5.34% 5.44% 

 Proportional domestic 
cost 

Uniform 0.987% 0.976% 0.994% 

 Gross mean growth Uniform 1.061 1.051 1.069 

 Persistence of trend 
shocks 

Uniform 0.883 0.875 0.891 

 SD of trend shocks Uniform 0.0329 0.0325 0.0332 
Acceptance ratio 18.60%   
Marginal data density -911.96   
 
Notes: This table shows the means and intervals bracketed by 5% and 95% of the posterior distributions. 

The intervals are tight, since the measurement equations include default state, assigning less likelihood 
on the particles of parameter vectors that could not predict default events and recoveries. 
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Table 4: Random-walk component. 

Argentina Proposed model 
1978–2013 

Proposed model 
1902–2005 

Capital income share α 0.0 α 0.32 α 0.0 α 0.32 
Random-walk component 0.69 0.50 0.73 0.56 
    

Mexico 
Proposed model 

1977–2013 
Proposed model 

1902–2005 
Aguiar and Gopinath (2007) Chang and Fernández (2013) 

Capital income share α 0.0 α 0.32 α 0.0 α 0.32 α 0.32 α 0.3132 
Random-walk component 0.73 0.56 0.89 0.80 0.88 0.18 

 
Notes: There is no parameter of capital income share α in the proposed models and most other structural sovereign default models assuming endowment 

economies. The larger α becomes, the smaller the random-walk component. Therefore, we also provide the results calibrated at α = 0.00 and α = 0.32, the 
latter being the similar value used by Aguiar and Gopinath (2007), García-Cicco et al. (2010), and Chang and Fernández (2013). The RWCs of Aguiar and 
Gopinath (2007) and Chang and Fernández (2013) are the result of the encompassing model. García-Cicco et al. (2010) do not provide RWCs directly, but 
based on their posterior, their RWCs are close to Chang and Fernández (2013). 
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Fig. 1. The nonlinear propagations of shocks in output post 1970s. 

A: Argentina (1978–2013) 

 
 

B: Mexico (1977–2013) 

 
Notes: Observables are log-differenced. Output fluctuations can be fully decomposed using equation (16), but 

external debts and bond prices cannot be decomposed into their respective shocks because of the lack of 
analytical forms. Trend shocks play an important role in business cycles in both figures, reflecting high 
RWCs. Stationary shocks drive the defaults in Argentina, but not in Mexico, where trend shocks drive 
default. 
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Fig. 2. The nonlinear propagations of shocks in output during 1902–2005. 

A: Argentina (1902–2005) 

 

 
B: Mexico (1977–2013) 

 

Notes: Observables are log-differenced. Output fluctuations can be fully decomposed using equation (16), but 
external debts and bond prices cannot be decomposed into their respective shocks because of the lack of 
analytical forms. Trend shocks play an important role in business cycles in both figures, reflecting high 
RWCs. Stationary shocks drive the defaults both in Argentina and Mexico. Particularly in Mexico, trend 
shocks are not default event drivers, unlike the 1977–2013 data. 



43 

Fig. 3. Path of estimated shocks post 1970s. 
 

A: Argentina (1978–2013) 

 
 

B: Mexico (1977–2013) 

 
 
Notes: The x-axis denotes time (annual), and the y-axis the value of trend shocks  and stationary shocks . 

The unconditional mean of stationary shocks is 1.00, and that of trend shocks is 1.0050 for Argentina and 
1.0017 for Mexico. Regarding Argentina, stationary shocks widely deviate above the unconditional mean and 
suddenly drop at default events, leading to countercyclical capital flows and interest rates. For Mexico, trend 
shocks play this role. 
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Fig. 4. Path of estimated shocks during 1902–2005. 

A: Argentina (1902–2005) 

 
B: Mexico (1902–2005) 

 
 
Notes: The x-axis denotes time (annual), and the y-axis the value of trend shocks  and stationary shocks . 

The unconditional mean of stationary shocks is 1.00, and that of trend shocks is 1.001 for Argentina and 
1.058 for Mexico. Both in Argentina and Mexico, stationary shocks widely deviate above the unconditional 
mean and suddenly drop at default events, leading to countercyclical capital flows and interest rates. For 
Mexico, stationary shocks are important, unlike in the 1977–2013 data. 
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Fig. 5. Bond price schedule for Argentina, 1978–2013. 

A: Positive shocks 

 

B: Negative shocks 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes the 

bond price. The lines are the bond schedules based on the posterior means of 1978–2013 Argentina (Table 2). 
The standard deviations are unconditional. The green lines correspond to stationary shocks , assuming that 
trend shocks  are zero, and the blue lines similarly correspond to trend shocks. A positive stationary 
shock maintains a bond price much higher than a trend shock, whereas the effect of a negative shock is 
similar between the two types of shocks. 

 
 
Fig. 6. Policy functions for Argentina, 1978–2013. 

A: Positive shocks 

 

B: Negative shocks 

 
 
Notes: The x-axis denotes the given foreign assets  and a negative sign signifies the debt position. The 

y-axis denotes foreign assets  decided at time . The lines are the policy functions based on the 
posterior means of 1978–2013 Argentina (Table 2). The standard deviations are unconditional. The green 
lines correspond to stationary shocks , assuming that trend shocks  are zero, and the green lines to 
trend shocks in a similar way. A positive stationary shock encourages more a sovereign to borrow than a 
trend shock. The effect of negative shocks appears to be vague, but matters only when the sovereign has 
foreign assets rather than external debt. 
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Fig. 7. Bond price schedule for Mexico, 1977–2013. 

A: Positive shocks 

 

B: Negative shocks 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes the 

bond price. The lines are the bond schedules based on the posterior means of 1977–2013 Mexico (Table 2). 
The standard deviations are unconditional. The green lines correspond to stationary shocks , assuming that 
trend shocks  are zero, and the blue lines to trend shocks in a similar way. A positive stationary shock 
sustains a bond price significantly higher than a trend shock, whereas the effect of negative shocks is similar 
between the two types of shocks. 

 

Fig. 8. Policy functions for Mexico, 1977–2013. 

A: Positive shocks 

 

B: Negative shocks 

 
 
Notes: The x-axis denotes given foreign assets , and a negative sign signifies the debt position. The y-axis 

denotes foreign assets  decided at time . The lines are the policy functions based on the posterior 
means of 1977–2013 Mexico (Table 2). The standard deviations are unconditional. The green lines 
correspond to stationary shocks , assuming that trend shocks  are zero, and the blue lines to trend 
shocks in a similar way. A positive trend shock encourages more a sovereign to borrow than a stationary 
shock. 
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Fig. 9. Bond price schedule and policy function for Argentina, 1902–2005. 

A: Bond price schedule (positive shocks) 

 

B: Policy function (positive shocks) 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes A: 

the bond price and B: foreign assets  decided at time . The lines are the bond schedules, based on the 
posterior means of 1902–2005 Argentina (Table 3). The standard deviations are unconditional. The green 
lines correspond to stationary shocks , assuming trend shocks  are zero, and the blue lines to trend 
shocks in a similar way. A positive stationary shock sustains a bond price much higher than a trend shock. A 
positive stationary shock encourages more a sovereign to borrow than a trend shock. 

 
 
Fig. 10. Bond price schedule and policy function for Mexico, 1902–2005. 

A: Bond price schedule (positive shocks) 

 

B: Policy function (positive shocks) 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes A: 

the bond price and B: foreign assets  decided at time . The lines are the bond schedules, based on the 
posterior means for 1902–2005 Mexico (Table 2). The standard deviations are unconditional. The green lines 
correspond to stationary shocks , assuming trend shocks  are zero, and the blue lines to trend shocks 
in a similar way. A positive stationary shock sustains a bond price higher than a trend shock, and encourages 
more a sovereign to borrow than a trend shock. Thereby, stationary shocks play an important here, unlike for 
the 1977–2013 data. 
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Fig. 11. Persistence effect. 
 

A: Bond price schedule (a positive shock) 

 

B: Policy function (a positive shock) 

 
 

C: Utility conditional on a positive shock 

 

 
D: Utility conditional on a negative shock 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes A: 

bond prices, B: foreign assets  decided at time , and C, D: conditional utility. Each value is calculated 
based on the posterior means for 1978–2013 Argentina (Table 2). The all lines correspond to a stationary 
shock , assuming a trend shock  is zero. The size of the shock is 2 unconditional standard deviations. 
As the persistence of shocks increases, A: the bond price increases, B: a sovereign borrows more, C: utility 
conditional on a positive shock increases, D: utility conditional on a negative shock decreases.  
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Fig. 12. Volatility effect. 
 

A: Bond price schedule (a positive shock) 

 

B: Policy function (a positive shock) 

 
 

C: Utility conditional on a positive shock 

 

 
D: Utility conditional on a negative shock 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes A: 

bond prices, B: foreign assets  decided at time , and C, D: conditional utility. Each value is calculated 
based on the posterior means of 1977–2013 Mexico (Table 2). The all lines correspond to a positive trend 
shock ln , assuming a stationary shock  is zero. The size of the shock is 2 unconditional standard 
deviations. As the volatility of trend shocks increases, A: the bond price increases, B: a sovereign borrows 
more, C: utility conditional on a positive shock increases, D: utility conditional on a negative shock 
decreases. However, if the volatility becomes too high (e.g., 0.1), A: the bond price decreases, B: a 
sovereign borrows less. 
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Fig. 13. Amplification effect of asymmetric domestic cost. 
 

A: Argentina, 1977–2013 

 

B: Mexico, 1977–2013 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes 

utility conditional on a shock of two unconditional standard deviations. Each value is calculated based on the 
posterior means of A: 1978–2013 Argentina and B: 1977–2013 Mexico (Table 2). The blue lines correspond 
to a trend shock ln , assuming a stationary shock  is zero. The green lines correspond to a trend shock in 
a similar way. As the asymmetric domestic cost of default increases, utility conditional on a positive shock 
shifts to the lower left. The difference of maximum debt level (difference of the kink) between a trend and 
stationary shock expands in panel B, since larger volatility implies quicker recovery from recessions, 
resulting in higher default cost. On the other hand, the difference does not expand, and the kink shifts 
proportionally in the panel A, since high persistence indicates slow recovery from recessions. 

 
 
Table 5: Second moments.  

Argentina Data Proposed 
model 

 Mexico Data Proposed 
model 

 5.74 5.46   3.38 3.22 
/  1.50 1.47  /  1.28 2.68 

/  3.87 4.10  /  3.29 5.76 

, /   -0.215 -0.253  , /   -0.454 -0.453 

,  0.497 0.314  ,  0.318 0.371 
/ ,  -0.173 0.128  / ,  -0.741 -0.165 

 /  0.674 0.091   /  0.751 0.220 

 

Argentina Data Proposed 
model 

 Mexico Data Proposed 
model 

 5.37 5.14   4.26 4.14 
/  1.41 1.26  /  1.45 1.13 

/  5.14 3.54  /  4.22 1.86 

, /   -0.05 -0.112  , /   -0.183 -0.094 

 /  0.577 0.685   /  0.722 0.717 

 
Notes: Standard deviations are reported in percentage points. The moments are calculated based on the 

prediction series of the particle filter with 20,000 particles pertaining to the posterior mean of Tables 2 and 3, 
respectively. The moments match the regularities of business cycles in emerging economies.  
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Table 6: Posteriors of the analysis using EMBI + spread. 

Argentina Priors Mean 5% 95% 
 Discount factor Uniform 0.872 0.833 0.891 
 Risk aversion Uniform 1.853 1.812 1.875 

 Risk-free interest rate Uniform 4.09% 3.91% 4.16% 

 
Persistence of stationary 
shocks 

Uniform 0.927 0.910 0.939 

 SD of stationary shocks Uniform 0.026 0.026 0.027 
 Probability of re-entry Uniform 22.48% 22.04% 22.81% 

 
Asymmetric domestic 
cost 

Uniform 1.14% 1.12% 1.15% 

 Proportional domestic 
cost 

Uniform 0.52% 0.51% 0.53% 

 Gross mean growth Uniform 1.033 1.020 1.038 

 Persistence of trend 
shocks 

Uniform 0.812 0.780 0.827 

 SD of trend shocks Uniform 0.026 0.025 0.026 
Acceptance ratio 17.55%   
Marginal data density -263.99   
 
Notes: This table shows the means and intervals bracketed by 5% and 95% of the posterior distributions. The 

intervals are tight, since the measurement equations include default state, assigning less likelihood on the 
particles of parameter vectors that could not predict default events and recoveries. 

 

Fig. 14. Bond price schedule and policy function for Argentina, 1983–2013, based on the 
estimation using EMBI+ spread. 
 

A: Bond price schedule (positive shocks) 

 

B: Policy function (positive shocks) 

 
 
Notes: The x-axis denotes foreign assets, and a negative sign signifies the debt position. The y-axis denotes A: 

bond prices and B: foreign assets  decided at time , based on the posterior means of 1983–2013 
Argentina (Table 6). The standard deviations are unconditional. The green lines correspond to stationary 
shocks , assuming trend shocks  are zero, and the blue lines to trend shocks in a similar way. A 
positive stationary shock maintains a bond price higher than a trend shock. A positive stationary shock 
encourages more a sovereign to borrow than a trend shock.  
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Table 7: Posteriors of the analysis using HP-filtering. 

Argentina Priors Mean 5% 95% 
 Discount factor Uniform 0.897 0.883 0.907 
 Risk aversion Uniform 2.132 2.053 2.181 

 Risk-free interest rate Uniform 4.39% 4.24% 4.66% 

 
Persistence of 
transitory shock 

Uniform 0.889 0.852 0.900 

 SD of stationary shock Uniform 0.028 0.028 0.029 
 Probability of re-entry Uniform 21.46% 20.70% 22.04% 

 
Asymmetric domestic 
costs 

Uniform 3.15% 2.94% 3.25% 

 Proportional domestic 
costs 

Uniform 0.026% 0.025% 0.028% 

Acceptance ratio  18.3%   
Marginal data density  -158.37   
    
Mexico Priors Mean 5% 95% 

 Discount factor Uniform 0.901 0.837 0.927 
 Risk aversion Uniform 1.858 1.605 1.940 

 Risk-free interest rate Uniform 4.11% 3.84% 4.25% 

 
Persistence of 
transitory shock 

Uniform 0.870 0.774 0.900 

 SD of stationary shock Uniform 0.018 0.017 0.018 
 Probability of re-entry Uniform 9.12% 7.89% 13.24% 

 
Asymmetric domestic 
costs 

Uniform 2.79% 2.67% 2.90% 

 Proportional domestic 
costs 

Uniform 0.018% 0.015% 0.019% 

Acceptance ratio  20.50%   
Marginal data density  -353.61   
 
Notes: This table shows the means and intervals bracketed by 5% and 95% of the posterior distributions. The 

intervals are tight, since the measurement equations include default state, assigning less likelihood on the 
particles of parameter vectors that could not predict default events and recoveries. 
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